Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation
暂无分享,去创建一个
Annalisa Pillepich | Lars Hernquist | Rainer Weinberger | Federico Marinacci | Paul Torrey | Jill Naiman | Dylan Nelson | Heidelberg University | Ryan McKinnon | Volker Springel | Cca | Mark Vogelsberger | Columbia | Robert A. Simcoe | Rudiger Pakmor | V. Springel | L. Hernquist | M. Vogelsberger | P. Torrey | D. Nelson | J. Naiman | Mpia | Mpa | HarvardCfA | Hits | R. Simcoe | A. Pillepich | R. Weinberger | F. Marinacci | R. Pakmor | H. University | HITS | MPA | MPIA | R. McKinnon | Shy Genel MIT | CCA | Shy Genel Mit
[1] J. Barrera-Ballesteros,et al. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA , 2017, 1711.00915.
[2] L. Cortese,et al. The role of atomic hydrogen in regulating the scatter of the mass-metallicity relation , 2017, 1709.07890.
[3] Cca,et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations , 2017, 1707.05318.
[4] Annalisa Pillepich,et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.
[5] G. Kauffmann,et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.
[6] Cca,et al. First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.
[7] Annalisa Pillepich,et al. Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.
[8] T. Heckman,et al. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies , 2017, 1706.09893.
[9] R. Bower,et al. Galaxy metallicity scaling relations in the EAGLE simulations , 2017, 1704.00006.
[10] L. Galbany,et al. The Mass-Metallicity Relation revisited with CALIFA , 2017, 1703.09769.
[11] P. Hopkins,et al. MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.
[12] V. Springel,et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.
[13] K. Finlator,et al. Equilibrium model prediction for the scatter in the star-forming main sequence , 2016, 1606.07436.
[14] P. Hopkins,et al. (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies , 2015, 1510.03869.
[15] K. Finlator. Gas Accretion and Galactic Chemical Evolution: Theory and Observations , 2016, 1612.00802.
[16] J. Dalcanton,et al. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE , 2016, 1606.08850.
[17] J. Wagg,et al. Galaxy metallicities depend primarily on stellar mass and molecular gas mass , 2016, 1606.04102.
[18] S. Genel. HOW ENVIRONMENT AFFECTS GALAXY METALLICITY THROUGH STRIPPING AND FORMATION HISTORY: LESSONS FROM THE ILLUSTRIS SIMULATION , 2016, 1602.02773.
[19] R. Bower,et al. The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations , 2015, 1510.08067.
[20] K. Glazebrook,et al. The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at $z\sim1.4$ , 2015, 1508.01512.
[21] L. Christensen,et al. Merging galaxies produce outliers from the fundamental metallicity relation , 2015, 1506.00551.
[22] J. Brinchmann,et al. A CRITICAL LOOK AT THE MASS–METALLICITY–STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS , 2014, 1411.7391.
[23] A. M. Swinbank,et al. A relationship between specific star formation rate and metallicity gradient within z ∼ 1 galaxies from KMOS-HiZELS , 2014, 1407.1047.
[24] L. Kewley,et al. THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS–METALLICITY RELATION , 2014, 1404.7526.
[25] A. Dekel,et al. On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations , 2013, 1311.1509.
[26] V. Springel,et al. A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.
[27] F. Mannucci,et al. A fundamental relation between the metallicity, gas content, and stellar mass of local galaxies , 2013, 1304.4940.
[28] K. Jahnke,et al. Mass-metallicity relation explored with CALIFA I. Is there a dependence on the star-formation rate? , 2013, 1304.2158.
[29] C. Carollo,et al. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.
[30] J. Richard,et al. TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES , 2013, 1302.3614.
[31] B. Andrews,et al. THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.
[32] L. Kewley,et al. THE METALLICITY EVOLUTION OF INTERACTING GALAXIES , 2011, 1107.0001.
[33] G. Kauffmann,et al. The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.
[34] M. S'anchez-Portal,et al. A fundamental plane for field star-forming galaxies , 2010, 1005.0509.
[35] F. Mannucci,et al. A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.
[36] A. McConnachie,et al. Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.
[37] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.