The in vitro inhibitory activity of polypyridine ligands towards subclass B1 metallo-β-lactamases

[1]  L. Basile,et al.  New polyimidazole ligands against subclass B1 metallo-β-lactamases: Kinetic, microbiological, docking analysis. , 2023, Journal of inorganic biochemistry.

[2]  H. Deng,et al.  A Cephalosporin-Tripodalamine Conjugate Inhibits Metallo-β-Lactamase with High Efficacy and Low Toxicity , 2022, Antimicrobial agents and chemotherapy.

[3]  M. Galleni,et al.  Exploring the Role of L10 Loop in New Delhi Metallo-β-lactamase (NDM-1): Kinetic and Dynamic Studies , 2021, Molecules.

[4]  R. Bonomo,et al.  The urgent need for metallo-β-lactamase inhibitors: an unattended global threat , 2021, The Lancet Infectious Diseases.

[5]  F. Brisdelli,et al.  Potent inhibitory activity of Taniborbactam towards NDM-1 and NDM-1Q119X mutants, and "in vitro" activity of cefepime/taniborbactam against MBLsproducing Enterobacterales. , 2020, International journal of antimicrobial agents.

[6]  S. Di Bella,et al.  Polypyridine ligands as potential metallo-β-lactamase inhibitors. , 2020, Journal of inorganic biochemistry.

[7]  L. Leibovici,et al.  New β-Lactam–β-Lactamase Inhibitor Combinations , 2020, Clinical Microbiology Reviews.

[8]  M. Totrov,et al.  Biochemical Characterization of QPX7728, a New Ultrabroad-Spectrum Beta-Lactamase Inhibitor of Serine and Metallo-Beta-Lactamases , 2020, Antimicrobial Agents and Chemotherapy.

[9]  K. Bush,et al.  Epidemiology of β-Lactamase-Producing Pathogens , 2020, Clinical Microbiology Reviews.

[10]  D. Daigle,et al.  Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections , 2019, Journal of medicinal chemistry.

[11]  Li,et al.  Deciphering the Role of V88L Substitution in NDM-24 metallo-β-lactamase , 2019, Catalysts.

[12]  K. Bush,et al.  Interplay between β-lactamases and new β-lactamase inhibitors , 2019, Nature Reviews Microbiology.

[13]  M. Aschi,et al.  Kinetic Profile and Molecular Dynamic Studies Show that Y229W Substitution in an NDM-1/L209F Variant Restores the Hydrolytic Activity of the Enzyme toward Penicillins, Cephalosporins, and Carbapenems , 2019, Antimicrobial Agents and Chemotherapy.

[14]  C. Viscoli,et al.  Recent advances in the pharmacological management of infections due to multidrug-resistant Gram-negative bacteria , 2018, Expert review of clinical pharmacology.

[15]  F. Spyrakis,et al.  Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. , 2018, ACS infectious diseases.

[16]  Lingxiao Zeng,et al.  Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1 , 2018, Antimicrobial Agents and Chemotherapy.

[17]  K. Bush,et al.  Past and Present Perspectives on β-Lactamases , 2018, Antimicrobial Agents and Chemotherapy.

[18]  R. Bonomo,et al.  Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity , 2018, The Journal of Biological Chemistry.

[19]  M. Galleni,et al.  P174E Substitution in GES-1 and GES-5 β-Lactamases Improves Catalytic Efficiency toward Carbapenems , 2018, Antimicrobial Agents and Chemotherapy.

[20]  Gerard D. Wright,et al.  Inhibitors of metallo-β-lactamases. , 2017, Current opinion in microbiology.

[21]  Pascal Retailleau,et al.  Beta-lactamase database (BLDB) – structure and function , 2017, Journal of enzyme inhibition and medicinal chemistry.

[22]  J. Latgé,et al.  Administration of Zinc Chelators Improves Survival of Mice Infected with Aspergillus fumigatus both in Monotherapy and in Combination with Caspofungin , 2016, Antimicrobial Agents and Chemotherapy.

[23]  M. Galleni,et al.  Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems , 2016, Antimicrobial Agents and Chemotherapy.

[24]  M. Galleni,et al.  Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35 , 2016, Antimicrobial Agents and Chemotherapy.

[25]  N. Strynadka,et al.  Aspergillomarasmine A overcomes metallo-b-lactamaseantibiotic resistance , 2014 .

[26]  J. Hermes,et al.  Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin®. , 2014, Bioorganic & medicinal chemistry letters.

[27]  T. Palzkill Metallo‐β‐lactamase structure and function , 2013, Annals of the New York Academy of Sciences.

[28]  D. Ehmann,et al.  Avibactam is a covalent, reversible, non–β-lactam β-lactamase inhibitor , 2012, Proceedings of the National Academy of Sciences.

[29]  K. Coleman Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. , 2011, Current opinion in microbiology.

[30]  Quan Hao,et al.  Crystal structure of NDM‐1 reveals a common β‐lactam hydrolysis mechanism , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  D. Simon,et al.  Two pyridine derivatives as potential Cu(II) and Zn(II) chelators in therapy for Alzheimer's disease. , 2010, Dalton transactions.

[32]  G. Jacoby,et al.  Updated Functional Classification of β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[33]  Yumin Zhang,et al.  Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. , 2009, Journal of the American Chemical Society.

[34]  Paolo Carloni,et al.  Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility , 2008, Proceedings of the National Academy of Sciences.

[35]  O. Dideberg,et al.  The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. , 2008, Journal of molecular biology.

[36]  Carine Bebrone,et al.  Update of the Standard Numbering Scheme for Class B β-Lactamases , 2004, Antimicrobial Agents and Chemotherapy.

[37]  J. Frère,et al.  Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. , 2000, Biochemistry.

[38]  B. Sutton,et al.  Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. , 1998, Biochemistry.

[39]  J. Frère,et al.  Catalytic properties of class A beta-lactamases: efficiency and diversity. , 1998, The Biochemical journal.

[40]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[41]  J. Frère,et al.  Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. , 1987, Biochemical pharmacology.

[42]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  D. W. Gruenwedel Multidentate coordination compounds. Chelating properties of aliphatic amines containing .alpha.-pyridyl residues and other aromatic ring systems as donor groups , 1968 .

[44]  Jean-Denis Docquier,et al.  An update on β-lactamase inhibitor discovery and development. , 2018, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[45]  T. Palzkill,et al.  Molecular analysis of beta-lactamase structure and function. , 2002, International journal of medical microbiology : IJMM.