Computational Challenges with Cliques, Quasi-cliques and Clique Partitions in Graphs

During the last decade, many problems in social, biological, and financial networks require finding cliques, or quasi-cliques. Cliques or clique partitions have also been used as clustering or classification tools in data sets represented by networks. These networks can be very large and often massive and therefore external (or semi-external) memory algorithms are needed. We discuss four applications where we identify computational challenges which are both of practical and theoretical interest.

[1]  Mario A. Maggioni,et al.  Learning, Innovation and Growth Within Interconected Clusters: An Agent-Based Approach , 2009 .

[2]  Brian Hayes Source GRAPH THEORY IN PRACTICE : PART I , 1999 .

[3]  P. Pardalos,et al.  A global optimization approach for solving the maximum clique problem , 1990 .

[4]  Peter Nijkamp,et al.  Small-World Phenomena in Communications Networks: A Cross-Atlantic Comparison , 2005 .

[5]  P. Pardalos,et al.  The Graph Coloring Problem: A Bibliographic Survey , 1998 .

[6]  P Willett,et al.  Use of techniques derived from graph theory to compare secondary structure motifs in proteins. , 1990, Journal of molecular biology.

[7]  K. Corrádi,et al.  A combinatorial approach for Keller's conjecture , 1990 .

[8]  Gilbert Laporte,et al.  Solving an ambulance location model by tabu search , 1997 .

[9]  Peter Willett,et al.  Maximum common subgraph isomorphism algorithms for the matching of chemical structures , 2002, J. Comput. Aided Mol. Des..

[10]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[11]  Sergio Rajsbaum,et al.  LATIN 2002: Theoretical Informatics , 2002, Lecture Notes in Computer Science.

[12]  Tuvi Etzion,et al.  New lower bounds for constant weight codes , 1989, IEEE Trans. Inf. Theory.

[13]  Derek Greene,et al.  Community Finding in Large Social Networks Through Problem Decomposition , 2008 .

[14]  O. Perron,et al.  Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel. II , 1940 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  Steffen Rebennack,et al.  Stable Set Problem: Branch & Cut Algorithms , 2009, Encyclopedia of Optimization.

[17]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[18]  Sherman K. Stein,et al.  Algebra and Tiling by Sherman K. Stein , 2009 .

[19]  Wilbert E. Wilhelm,et al.  Clique-detection models in computational biochemistry and genomics , 2006, Eur. J. Oper. Res..

[20]  Sanjeev Arora,et al.  Probabilistic checking of proofs; a new characterization of NP , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[21]  B. Hayes Graph Theory in Practice: Part II , 2000, American Scientist.

[22]  Gilbert Laporte,et al.  Fast heuristics for large scale covering-location problems , 2002, Comput. Oper. Res..

[23]  D. West Introduction to Graph Theory , 1995 .

[24]  Charles E. M. Pearce,et al.  Optimization : structure and applications , 2009 .

[25]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[26]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[27]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[28]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[29]  Peter Willett,et al.  Algorithms for the identification of three-dimensional maximal common substructures , 1987, J. Chem. Inf. Comput. Sci..

[30]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[31]  Peter Willett,et al.  Graph-Theoretic Techniques for Macromolecular Docking , 2000, J. Chem. Inf. Comput. Sci..

[32]  Tuvi Etzion,et al.  Lower bounds for constant weight Codes , 1989 .

[33]  Jeffrey Scott Vitter External memory algorithms , 1998, PODS '98.

[34]  O. Keller,et al.  Über die lückenlose Erfüllung des Raumes mit Würfeln. , 1930 .

[35]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[36]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[37]  J. Crabbe Wilf: Algorithms and Complexity , 1986 .

[38]  Jeffrey C. Lagarias,et al.  Keller’s cube-tiling conjecture is false in high dimensions , 1992 .

[39]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[40]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[41]  Sougata Mukherjea,et al.  Analyzing the Structure and Evolution of Massive Telecom Graphs , 2008, IEEE Transactions on Knowledge and Data Engineering.

[42]  Panos M. Pardalos,et al.  Test case generators and computational results for the maximum clique problem , 1993, J. Glob. Optim..

[43]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[44]  Gerhard Reinelt,et al.  A Branch and Cut solver for the maximum stable set problem , 2011, J. Comb. Optim..

[45]  Bin Wu,et al.  TeleComVis: Exploring Temporal Communities in Telecom Networks , 2009, ECML/PKDD.

[46]  Gottfried Tinhofer,et al.  A branch and bound algorithm for the maximum clique problem , 1990, ZOR Methods Model. Oper. Res..

[47]  P. Pardalos,et al.  Clustering challenges in biological networks , 2009 .

[48]  Mackey A Cube Tiling of Dimension Eight with No Facesharing , 2002 .

[49]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.

[50]  Panos M. Pardalos,et al.  Estimating the size of correcting codes using extremal graph problems , 2009 .

[51]  Eleanor J. Gardiner,et al.  Clique-detection algorithms for matching three-dimensional molecular structures. , 1997, Journal of molecular graphics & modelling.

[52]  Aura Reggiani,et al.  Methods and Models in Transport and Telecommunications , 2005 .