Hierarchical confidence-based active clustering

In this paper, we address the problem of semi-supervised hierarchical clustering by using an active clustering solution with cluster-level constraints. This active learning approach is based on a concept of merge confidence in agglomerative clustering. The proposed method was compared with an un-supervised algorithm (average-link) and a semi-supervised algorithm based on pairwise constraints. The results show that our algorithm tends to be better than the pairwise constrained algorithm and can achieve a significant improvement when compared to the unsupervised algorithm.