Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.

[1]  H. Dewald,et al.  Potential antiviral agents. Carbobenzoxy di- and tripeptides active against measles and herpes viruses. , 1968, Journal of medicinal chemistry.

[2]  G. J. Dixon,et al.  Antiviral activity of carbobenzosy di- and tripeptides on measles virus. , 1968, Applied microbiology.

[3]  E. Norrby,et al.  The effect of a carbobenzoxy tripeptide on the biological activities of measles virus. , 1971, Virology.

[4]  M. Gething,et al.  Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. Ward,et al.  Influenza virus haemagglutinin. Structural predictions suggest that the fibrillar appearance is due to the presence of a coiled-coil. , 1980, Australian journal of biological sciences.

[6]  S. Ohnishi,et al.  Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes , 1980, FEBS letters.

[7]  D. Huylebroeck,et al.  Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75 , 1980, Nature.

[8]  C. Richardson,et al.  Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. , 1980, Virology.

[9]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[10]  H. Klenk,et al.  Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. , 1981, Virology.

[11]  R. Rand Interacting phospholipid bilayers: measured forces and induced structural changes. , 1981, Annual review of biophysics and bioengineering.

[12]  A. Helenius,et al.  Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses , 1981, The Journal of cell biology.

[13]  H. Klenk,et al.  Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. , 1981, Virology.

[14]  I. Wilson,et al.  Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation , 1981, Nature.

[15]  H. Klenk,et al.  Influenza viruses cause hemolysis and fusion of cells. , 1981, Virology.

[16]  J. Yewdell,et al.  The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype) , 1982, Cell.

[17]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Richardson,et al.  Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. , 1983, Virology.

[19]  H. Klenk,et al.  Characterization of the carboxypeptidase involved in the proteolytic cleavage of the influenza haemagglutinin. , 1983, The Journal of general virology.

[20]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[21]  J. Skehel,et al.  Electron microscopy of influenza haemagglutinin-monoclonal antibody complexes. , 1983, Virology.

[22]  J. N. Varghese,et al.  Structure of the catalytic and antigenic sites in influenza virus neuraminidase , 1983, Nature.

[23]  J. Skehel,et al.  Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. , 1983, The Journal of general virology.

[24]  I. Wilson,et al.  Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity , 1983, Nature.

[25]  I. Wilson,et al.  A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Naeve,et al.  Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. , 1984, Virology.

[27]  J. Skehel,et al.  Studies on the adaptation of influenza viruses to MDCK cells. , 1984, The EMBO journal.

[28]  C. Naeve,et al.  Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus , 1984, Journal of virology.

[29]  M. Knossow,et al.  Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin , 1984, Nature.

[30]  D. Wiley,et al.  Fusion mutants of the influenza virus hemagglutinin glycoprotein , 1985, Cell.

[31]  D. Filman,et al.  Three-dimensional structure of poliovirus at 2.9 A resolution. , 1985, Science.

[32]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[33]  J. Skehel,et al.  Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2,3Gal-specific wild type in ovo. , 1985, The Journal of biological chemistry.

[34]  R. Webster,et al.  Evolution of the A/Chicken/Pennsylvania/83 (H5N2) influenza virus. , 1985, Virology.

[35]  J. Skehel,et al.  Studies of influenza haemagglutinin-mediated membrane fusion. , 1986, Virology.

[36]  M. Gething,et al.  Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus , 1986, The Journal of cell biology.

[37]  J. Skehel,et al.  Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. , 1986, Virology.

[38]  J. Henneberry,et al.  Variant influenza virus hemagglutinin that induces fusion at elevated pH , 1986, Journal of virology.

[39]  R. Doms,et al.  Quaternary structure of influenza virus hemagglutinin after acid treatment , 1986, Journal of virology.

[40]  V. Parsegian,et al.  Mimicry and mechanism in phospholipid models of membrane fusion. , 1986, Annual review of physiology.

[41]  J. Skehel,et al.  The receptor‐binding and membrane‐fusion properties of influenza virus variants selected using anti‐haemagglutinin monoclonal antibodies. , 1987, The EMBO journal.

[42]  R. Webster,et al.  Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Webster,et al.  Influenza virus a pathogenicity: The pivotal role of hemagglutinin , 1987, Cell.

[44]  J. Paulson,et al.  Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. , 1987, Virology.

[45]  J. Oxford,et al.  Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. , 1987, Virology.

[46]  J. Skehel,et al.  The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. , 1987, Annual review of biochemistry.

[47]  H. Klenk,et al.  The Molecular Biology of Influenza Virus Pathogenicity , 1988, Advances in Virus Research.

[48]  G. Rose,et al.  Helix signals in proteins. , 1988, Science.

[49]  J. Skehel,et al.  Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. , 1988, The Journal of general virology.

[50]  A. Helenius,et al.  Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin , 1988, Cell.

[51]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[52]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[53]  G M Whitesides,et al.  Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. , 1989, Biochemistry.

[54]  G. N. Rogers,et al.  Receptor binding properties of human and animal H1 influenza virus isolates. , 1989, Virology.

[55]  J. Paulson,et al.  Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin. , 1989, The Journal of biological chemistry.

[56]  W. Almers,et al.  Patch clamp studies of single cell-fusion events mediated by a viral fusion protein , 1989, Nature.

[57]  H. Klenk,et al.  Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones , 1989, Virology.

[58]  H. Klenk,et al.  Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (H5N2). , 1989, Virology.

[59]  C. Pringle,et al.  Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. , 1990, The Journal of general virology.

[60]  J. White,et al.  Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. , 1990, Biochemistry.

[61]  R. Webster,et al.  Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. , 1990, Virology.

[62]  D. Alford,et al.  An architecture for the fusion site of Influenza hemagglutinin , 1990, FEBS letters.

[63]  J. Sodroski,et al.  Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein , 1991, Journal of virology.

[64]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[65]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[66]  Y Tateno,et al.  Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. , 1991, Virology.

[67]  G. Whitesides,et al.  Polyacrylamides bearing pendant .alpha.-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus , 1991 .

[68]  P. Domaille,et al.  Synthesis of cluster sialoside inhibitors for influenza virus , 1991 .

[69]  R. Blumenthal,et al.  Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density , 1991, Journal of virology.

[70]  J. Knowles,et al.  Ligand recognition by influenza virus. The binding of bivalent sialosides. , 1991, The Journal of biological chemistry.

[71]  W. Almers,et al.  The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Skehel,et al.  Proton nuclear magnetic resonance studies of the binding of sialosides to intact influenza virus. , 1992, Virology.

[73]  M. Vey,et al.  Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin‐like endoprotease. , 1992, The EMBO journal.

[74]  W. J. Bean,et al.  Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts , 1992, Journal of virology.

[75]  V. Blinov,et al.  The envelope glycoprotein of Ebola virus contains an immunosuppressive‐like domain similar to oncogenic retroviruses , 1992, FEBS letters.

[76]  J. Skehel,et al.  Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. , 1994, Biochemistry.

[77]  R. Ruigrok,et al.  Low pH deforms the influenza virus envelope. , 1992, The Journal of general virology.

[78]  E. Schreiner,et al.  Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. , 1992, European journal of biochemistry.

[79]  M B Eisen,et al.  Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Tsurudome,et al.  Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. , 1992, The Journal of biological chemistry.

[81]  N. Katunuma,et al.  Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. , 1992, The Journal of biological chemistry.

[82]  J. J. Rosa,et al.  Truncated variants of gp120 bind CD4 with high affinity and suggest a minimum CD4 binding region. , 1992, The EMBO journal.

[83]  R. Webster,et al.  Influence of host cell-mediated variation on the international surveillance of influenza A (H3N2) viruses. , 1993, Virology.

[84]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[85]  S. Takahashi,et al.  Orientation of fusion-active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy. , 1993, Biochemistry.

[86]  G. Melikyan,et al.  Influenza hemagglutinin-mediated fusion pores connecting cells to planar membranes: flickering to final expansion , 1993, The Journal of general physiology.

[87]  W. Almers,et al.  Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion , 1993, The Journal of cell biology.

[88]  H. Klenk,et al.  Methyl α‐glycoside of N‐thioacetyl‐d‐neuraminic acid: A potential inhibitor of influenza A virus a 1H NMR study , 1993, FEBS letters.

[89]  J. Sodroski,et al.  Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein , 1993, Journal of virology.

[90]  G. Melikyan,et al.  Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages , 1993, The Journal of general physiology.

[91]  I D Kuntz,et al.  Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. , 1993, Biochemistry.

[92]  J. Paulson,et al.  Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. , 1993, Virus research.

[93]  Y. Henis,et al.  GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity , 1993, The Journal of cell biology.

[94]  H. Kido,et al.  Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus , 1993, FEBS letters.

[95]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[96]  Y. Kawaoka,et al.  Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus. , 1993, The Journal of general virology.

[97]  G. Semenza,et al.  Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. , 1994, The Journal of biological chemistry.

[98]  R. Rott,et al.  Thermolysin activation mutants with changes in the fusogenic region of an influenza virus hemagglutinin , 1994, Journal of virology.

[99]  J. Sodroski,et al.  Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies , 1994, Journal of virology.

[100]  S. Watowich,et al.  Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. , 1994, Structure.

[101]  H. Klenk,et al.  Host cell proteases controlling virus pathogenicity. , 1994, Trends in microbiology.

[102]  R. Webster,et al.  Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. , 1994, Virology.

[103]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[104]  D. King,et al.  Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. , 1994, Science.

[105]  J. Zimmerberg,et al.  Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion , 1994, The Journal of cell biology.

[106]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[107]  J. White,et al.  GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes , 1995, The Journal of cell biology.

[108]  R. Webster,et al.  Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. , 1995, Virology.

[109]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[110]  J. Skehel,et al.  Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin , 1995, Journal of virology.

[111]  Y. Shai,et al.  A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus‐cell fusion: an emerging similarity with functional domains of other viruses. , 1995, The EMBO journal.

[112]  C. Naeve,et al.  Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. , 1995, Virology.

[113]  J. Skehel,et al.  Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. , 1995, The EMBO journal.

[114]  Stephen C. Blacklow,et al.  A trimeric structural domain of the HIV-1 transmembrane glycoprotein , 1995, Nature Structural Biology.

[115]  W. Weissenhorn,et al.  A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Pascal Rigolet,et al.  Structure of influenza virus haemagglutinin complexed with a neutralizing antibody , 1995, Nature.

[117]  Ari Helenius,et al.  Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum , 1995, Cell.

[118]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[119]  P. S. Kim,et al.  A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. , 1995, Biochemistry.

[120]  Timothy S. Baker,et al.  Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon , 1996, Nature.

[121]  S. Durell,et al.  Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events , 1996, The Journal of cell biology.

[122]  M. Krystal,et al.  Characterization of a hemagglutinin-specific inhibitor of influenza A virus. , 1996, Virology.

[123]  Y. Maeda,et al.  Identification and mapping of functional domains on human T-cell lymphotropic virus type 1 envelope proteins by using synthetic peptides , 1996, Journal of virology.

[124]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 Å resolution , 1996, Nature Structural Biology.

[125]  J. Skehel,et al.  A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor. , 1996, Virology.

[126]  T. Vorherr,et al.  H+-induced Membrane Insertion of Influenza Virus Hemagglutinin Involves the HA2 Amino-terminal Fusion Peptide but Not the Coiled Coil Region* , 1996, The Journal of Biological Chemistry.

[127]  J. Hansen,et al.  Rapid selection for an N-linked oligosaccharide by monoclonal antibodies directed against the V3 loop of human immunodeficiency virus type 1. , 1996, The Journal of general virology.

[128]  R. Webster,et al.  Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. , 1996, Virology.

[129]  S. Pelletier,et al.  Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers , 1996, The Journal of cell biology.

[130]  J. Zimmerberg,et al.  Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[131]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[132]  I D Kuntz,et al.  Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity , 1997, Journal of virology.

[133]  Y. Kawaoka,et al.  Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection , 1997, Journal of virology.

[134]  R. Epand,et al.  The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. , 1997, Biophysical journal.

[135]  J. Sodroski,et al.  Analysis of the interaction of the human immunodeficiency virus type 1 gp120 envelope glycoprotein with the gp41 transmembrane glycoprotein , 1997, Journal of virology.

[136]  Christos,et al.  Inhibition of HIV type 1 infectivity by constrained alpha-helical peptides: implications for the viral fusion mechanism. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Y. Shin,et al.  The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. , 1997, Journal of molecular biology.

[138]  Virus versus antibody. , 1997, Structure.

[139]  R. Epand,et al.  Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. , 1997, Biochemistry.

[140]  Maricarmen García,et al.  Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. , 1997, Virus research.

[141]  K. Tan,et al.  Atomic structure of a thermostable subdomain of HIV-1 gp41. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[142]  G. Melikyan,et al.  Inner but Not Outer Membrane Leaflets Control the Transition from Glycosylphosphatidylinositol-anchored Influenza Hemagglutinin-induced Hemifusion to Full Fusion , 1997, The Journal of cell biology.

[143]  J. Skehel,et al.  Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. , 1997, Virology.

[144]  F. Hughson Enveloped viruses: A common mode of membrane fusion? , 1997, Current Biology.

[145]  S. Teneberg,et al.  Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. , 1997, Virology.

[146]  H. Kido,et al.  Molecular Basis of Proteolytic Activation of Sendai Virus Infection and the Defensive Compounds for Infection , 1997, Biological chemistry.

[147]  N. Meanwell,et al.  Molecular mechanism underlying the action of a novel fusion inhibitor of influenza A virus , 1997, Journal of virology.

[148]  P S Kim,et al.  Influenza hemagglutinin is spring-loaded by a metastable native conformation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[149]  N V Bovin,et al.  Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). , 1997, Virology.

[150]  M B Eisen,et al.  Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. , 1997, Virology.

[151]  K. Kawasaki,et al.  Structural Features of Membrane Fusion between Influenza Virus and Liposome as Revealed by Quick-Freezing Electron Microscopy , 1997, The Journal of cell biology.

[152]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[153]  Damien Fleury,et al.  Antigen distortion allows influenza virus to escape neutralization , 1998, Nature Structural Biology.

[154]  C. H. Kim,et al.  The mechanism for low-pH-induced clustering of phospholipid vesicles carrying the HA2 ectodomain of influenza hemagglutinin. , 1998, Biochemistry.

[155]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[156]  M. Kozlov,et al.  A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. , 1998, Biophysical journal.

[157]  J. Skehel,et al.  A polar octapeptide fused to the N-terminal fusion peptide solubilizes the influenza virus HA2 subunit ectodomain. , 1998, Biochemistry.

[158]  R. Webster,et al.  Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus , 1998, The Lancet.

[159]  J. Skehel,et al.  Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus , 1998, Nature.

[160]  Y. Kawaoka,et al.  Molecular Mechanisms of Serum Resistance of Human Influenza H3N2 Virus and Their Involvement in Virus Adaptation in a New Host , 1998, Journal of Virology.

[161]  S. Durell,et al.  Dilation of the Human Immunodeficiency Virus–1 Envelope Glycoprotein Fusion Pore Revealed by the Inhibitory Action of a Synthetic Peptide from gp41 , 1998, The Journal of cell biology.

[162]  R. Lamb,et al.  A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. , 1998, Virology.

[163]  J. Skehel,et al.  Studies of the binding properties of influenza hemagglutinin receptor-site mutants. , 1998, Virology.

[164]  R. Means,et al.  A role for carbohydrates in immune evasion in AIDS , 1998, Nature Medicine.

[165]  A. Waring,et al.  Conformational mapping of a viral fusion peptide in structure‐promoting solvents using circular dichroism and electrospray mass spectrometry , 1998, Proteins.

[166]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[167]  T. Matthews,et al.  Determinants of Human Immunodeficiency Virus Type 1 Resistance to gp41-Derived Inhibitory Peptides , 1998, Journal of Virology.

[168]  Eric Hunter,et al.  Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry , 1998, Nature Medicine.

[169]  C. Weiss,et al.  Capture of an early fusion-active conformation of HIV-1 gp41 , 1998, Nature Structural Biology.

[170]  W. Weissenhorn,et al.  Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. , 1998, Molecular cell.

[171]  Peter D. Kwong,et al.  The antigenic structure of the HIV gp120 envelope glycoprotein , 1998, Nature.

[172]  N. Cox,et al.  Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. , 1998, Science.

[173]  C. Weiss,et al.  Mutational Analysis of Residues in the Coiled-Coil Domain of Human Immunodeficiency Virus Type 1 Transmembrane Protein gp41 , 1998, Journal of Virology.

[174]  Y. Kawaoka,et al.  The Role of Influenza A Virus Hemagglutinin Residues 226 and 228 in Receptor Specificity and Host Range Restriction , 1998, Journal of Virology.

[175]  M. Peiris,et al.  Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus , 1998, The Lancet.

[176]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[177]  David J Stevens,et al.  Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation , 1998, Cell.

[178]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[179]  Yoshihiro Kawaoka,et al.  Molecular Basis for the Generation in Pigs of Influenza A Viruses with Pandemic Potential , 1998, Journal of Virology.

[180]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[181]  A. Gronenborn,et al.  Three‐dimensional solution structure of the 44 kDa ectodomain of SIV gp41 , 1998, The EMBO journal.

[182]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[183]  J. Skehel,et al.  Membrane fusion by surrogate receptor-bound influenza haemagglutinin. , 1999, Virology.

[184]  M. Matrosovich,et al.  Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. , 1999, Virology.

[185]  Damien Fleury,et al.  A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site , 1999, Nature Structural Biology.

[186]  D. Steinhauer,et al.  Role of hemagglutinin cleavage for the pathogenicity of influenza virus. , 1999, Virology.

[187]  R. Webster,et al.  The Surface Glycoproteins of H5 Influenza Viruses Isolated from Humans, Chickens, and Wild Aquatic Birds Have Distinguishable Properties , 1999, Journal of Virology.

[188]  H. Kido,et al.  The human mucus protease inhibitor and its mutants are novel defensive compounds against infection with influenza A and Sendai viruses. , 1999, Biopolymers.

[189]  J. Baker,et al.  Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. , 1999, Bioconjugate chemistry.

[190]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[191]  N. Meanwell,et al.  pH-Dependent Changes in Photoaffinity Labeling Patterns of the H1 Influenza Virus Hemagglutinin by Using an Inhibitor of Viral Fusion , 1999, Journal of Virology.

[192]  J. Skehel,et al.  X‐ray crystallographic determination of the structure of the influenza C virus haemagglutinin‐esterase‐fusion glycoprotein , 1999, Acta crystallographica. Section D, Biological crystallography.

[193]  R. Center,et al.  Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[194]  R. Nilakantan,et al.  Inhibition of influenza A virus replication by compounds interfering with the fusogenic function of the viral hemagglutinin. , 1999, Journal of virology.

[195]  R. Lamb,et al.  The paramyxovirus fusion protein forms an extremely stable core trimer: structural parallels to influenza virus haemagglutinin and HIV-1 gp41. , 1999, Molecular membrane biology.

[196]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[197]  P. S. Kim,et al.  Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.