Interactive Tone Mapping

Tone mapping and visual adaptation are crucial for the generation of static, photorealistic images. A largely unexplored problem is the simulation of adaptation and its changes over time on the visual appearance of a scene. These changes are important in interactive applications, including walkthroughs or games, where effects such as dazzling, slow dark-adaptation, or more subtle effects of visual adaptation can greatly enhance the immersive impression. In applications such as driving simulators, these changes must be modeled in order to reproduce the visibility conditions of real-world situations. In this paper, we address the practical issues of interactive tone mapping and propose a simple model of visual adaptation. We describe a multi-pass interactive rendering method that computes the average luminance in a first pass and renders the scene with a tone mapping operator in the second pass. We also propose several extensions to the tone mapping operator of Ferwerda et al. [FPSG96]. We demonstrate our model for the display of global illumination solutions and for interactive walkthroughs.

[1]  Greg Ward,et al.  A Contrast-Based Scalefactor for Luminance Display , 1994, Graphics Gems.

[2]  Takashi Okamoto,et al.  A lighting model aiming at drive simulators , 1990, SIGGRAPH.

[3]  P. Trezona,et al.  Rod participation in the 'blue' mechanism and its effect on colour matching. , 1970, Vision research.

[4]  Donald P. Greenberg,et al.  Time-dependent visual adaptation for fast realistic image display , 2000, SIGGRAPH.

[5]  S. Shlaer THE RELATION BETWEEN VISUAL ACUITY AND ILLUMINATION , 1937, The Journal of general physiology.

[6]  R. Hunt Light and dark adaptation and the perception of color. , 1952, Journal of the Optical Society of America.

[7]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[8]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[9]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[10]  Donald P. Greenberg,et al.  Physically-based glare effects for digital images , 1995, SIGGRAPH.

[11]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[12]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[13]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[14]  Greg Turk,et al.  LCIS: a boundary hierarchy for detail-preserving contrast reduction , 1999, SIGGRAPH.

[15]  John Rohlf,et al.  IRIS performer: a high performance multiprocessing toolkit for real-time 3D graphics , 1994, SIGGRAPH.

[16]  Gerald Millerson Lighting for television and film , 1999 .

[17]  Donald C. Hood,et al.  THE CONTROL OF VISUAL SENSITIVITY , 1990 .

[18]  R. Bracewell Two-dimensional imaging , 1994 .

[19]  Jessica K. Hodgins,et al.  Two methods for display of high contrast images , 1999, TOGS.

[20]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[21]  M. Hayhoe,et al.  The time-course of multiplicative and subtractive adaptation process , 1987, Vision Research.

[22]  Michael H. Brill,et al.  Color appearance models , 1998 .

[23]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[24]  Greg Turk,et al.  Three methods of detail-preserving contrast reduction for displayed images , 1999 .

[25]  Edward H. Adelson,et al.  Saturation and adaptation in the rod system , 1982, Vision Research.

[26]  Karl-Heinz T. Bäuml,et al.  Color constancy: the role of image surfaces in illuminant adjustment , 1999 .

[27]  J. L. Schnapf,et al.  5 – THE CONTROL OF VISUAL SENSITIVITY: Receptoral and Postreceptoral Processes , 1990 .

[28]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[29]  M D Fairchild,et al.  Time course of chromatic adaptation for color-appearance judgments. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Roy S. Berns,et al.  Precision requirements for digital color reproduction , 1992, TOGS.

[31]  Donald C. Hood,et al.  Sensitivity to Light , 1986 .

[32]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[33]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997 .

[34]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[35]  Jan J. Koenderink,et al.  Limits in perception , 1984 .

[36]  Hans-Peter Seidel,et al.  Tone Reproduction for Interactive Walkthroughs , 2000, Comput. Graph. Forum.

[37]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[38]  László Neumann,et al.  Incident Light Metering in Computer Graphics , 1998, Comput. Graph. Forum.

[39]  S. Hecht THE RELATION BETWEEN VISUAL ACUITY AND ILLUMINATION , 1928, The Journal of general physiology.

[40]  E. J. Breneman Corresponding chromaticities for different states of adaptation to complex visual fields. , 1987, Journal of the Optical Society of America. A, Optics and image science.