Large-mode-area infrared guiding in ultrafast laser written waveguides in sulfur-based chalcogenide glasses.

Current demands in astrophotonics impose advancing optical functions in infrared domains within embedded refractive index designs. We demonstrate concepts for large-mode-area guiding in ultrafast laser photowritten waveguides in bulk Sulfur-based chalcogenide glasses. If positive index contrasts are weak in As2S3, Ge doping increases the matrix rigidity and allows for high contrast (10(-3)) positive refractive index changes. Guiding with variable mode diameter and large-mode-area light transport is demonstrated up to 10 μm spectral domain using transverse slit-shaped and evanescently-coupled multicore traces.

[1]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[2]  Animesh Jha,et al.  Three-dimensional mid-infrared photonic circuits in chalcogenide glass. , 2012, Optics letters.

[3]  D. Hewak,et al.  Spectral broadening in femtosecond laser written waveguides in chalcogenide glass , 2009 .

[4]  Tanaka,et al.  Structural phase transitions in chalcogenide glasses. , 1989, Physical review. B, Condensed matter.

[5]  Koji Sugioka,et al.  Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. , 2003, Optics letters.

[6]  Alain Villeneuve,et al.  As 2 S 3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides , 1998 .

[7]  P. Royer,et al.  Wavelength-scale stationary-wave integrated Fourier-transform spectrometry , 2007, 0708.0272.

[8]  Animesh Jha,et al.  Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption , 2001 .

[9]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[10]  J. Bland-Hawthorn,et al.  New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating. , 2004, Optics express.

[11]  Kevin P. Chen,et al.  Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss , 2012, CLEO 2012.

[12]  V. K. Tikhomirov,et al.  Novel photo-induced effects in chalcogenide glasses , 1991 .

[13]  J. G. Robertson,et al.  Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging , 2012, 1210.0603.

[14]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[15]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[16]  France,et al.  Integrated optics for astronomical interferometry - I. Concept and astronomical applications , 1999 .

[17]  Lucas Labadie,et al.  First fringes with an integrated-optics beam combiner at 10 μm. A new step towards instrument miniaturization for mid-infrared interferometry , 2011, 1104.2899.

[18]  Stanford R. Ovshinsky,et al.  Photostructural transformations in amorphous As2Se3 and As2S3 films , 1974 .

[19]  Razvan Stoian,et al.  Size correction in ultrafast laser processing of fused silica by temporal pulse shaping , 2008 .

[20]  David Le Coq,et al.  Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation. , 2013, Optics letters.

[21]  M. Richardson,et al.  Refractive index modifications in Chalcogenide films induced by sub-bandgap near-IR femtosecond pulses , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[22]  J. Cruz,et al.  "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.

[23]  Jun Li,et al.  Observation of light polarization-dependent structural changes in chalcogenide glasses , 2003 .

[24]  Jerry R. Meyer,et al.  Feature issue introduction: mid-IR photonic materials , 2013 .

[25]  Kazuyuki Hirao,et al.  Third-order nonlinear optical properties of chalcogenide glasses , 1997 .

[26]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[27]  David Le Coq,et al.  Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation. , 2011, Optics express.

[28]  Saulius Juodkazis,et al.  Photo-structuring of As(2)S(3) glass by femtosecond irradiation. , 2006, Optics express.

[29]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[30]  Benjamin J Eggleton,et al.  Chalcogenide photonics: fabrication, devices and applications. Introduction. , 2010, Optics express.

[31]  Karine Rousselet-Perraut,et al.  Integrated optics for astronomical interferometry , 1999 .

[32]  Joss Bland-Hawthorn,et al.  Astrophotonics: a new era for astronomical instruments. , 2009, Optics express.

[33]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[34]  Keiji Tanaka Photoexpansion in As2S3 glass , 1998 .

[35]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[36]  Martin Richardson,et al.  Direct femtosecond laser writing of waveguides in As2S3 thin films. , 2004, Optics letters.

[37]  H. Fritzsche,et al.  Photo-induced fluidity of chalcogenide glasses , 1996 .

[38]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[39]  Benjamin J. Eggleton,et al.  Supercontinuum generation in chalcogenide glass waveguides , 2010 .

[40]  Tanya M. Monro,et al.  Light-induced self-writing effects in bulk chalcogenide glass , 2002 .

[41]  J. A. Savage,et al.  Optical properties of chalcogenide glasses , 1982 .

[42]  Peter A. Thielen Nonlinear optical properties of chalcogenide glasses , 2004 .

[43]  Arnaud Cuisset,et al.  Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass , 2012 .

[44]  Joss Bland-Hawthorn,et al.  Efficient multi-mode to single-mode coupling in a photonic lantern. , 2009, Optics express.

[45]  Johann Troles,et al.  Recent advances in chalcogenide glasses , 2004 .

[46]  Thomas Graf,et al.  Very-large-mode-area, single-mode multicore fiber. , 2009, Optics letters.

[47]  Leslie Brandon Shaw,et al.  Non-linear properties of chalcogenide glasses and fibers , 2008 .

[48]  Nick Cvetojevic,et al.  Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy. , 2012, Optics express.

[49]  Razvan Stoian,et al.  Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica. , 2013, Optics letters.

[50]  Daniel W. Hewak,et al.  Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass , 2007, 2110.10471.

[51]  J Lucas,et al.  Infrared single mode chalcogenide glass fiber for space. , 2007, Optics express.

[52]  S. Krishnaswami,et al.  In situ high-resolution X-ray photoelectron spectroscopy of light-induced changes in As Se glasses , 2000 .

[53]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .