APPROXIMATING COMMON FIXED POINTS OF NONCOMMUTING ALMOST CONTRACTIONS IN METRIC SPACES

In this paper we prove the existence of coincidence points and common fixed points of noncommuting almost contractions in metric spaces. Moreover, a method for approximating the coincidence points or the common fixed points is also constructed, for which both a priori and a posteriori error estimates are obtained. These results generalize, extend and unify several classical and very recent related results in literature.

[1]  G. Jungck,et al.  COMMON FIXED POINTS FOR NONCONTINUOUS NONSELF MAPS ON NONMETRIC SPACES , 1996 .

[2]  B. Rhoades,et al.  A comparison of various definitions of contractive mappings , 1977 .

[3]  Mujahid Abbas,et al.  Common fixed point results for noncommuting mappings without continuity in cone metric spaces , 2008 .

[4]  K. Deimling Fixed Point Theory , 2008 .

[5]  S. K. Chatterjea Fixed Point Theorems For A Sequence Of Mappings With Contractive Iterates , 1972 .

[6]  D. R. Smart Fixed Point Theorems , 1974 .

[7]  V. Berinde Error estimates for approximating xed points of quasi contractions , 2005 .

[8]  V. Berinde Iterative Approximation of Fixed Points , 2007 .

[9]  H. Pathak,et al.  SOME RESULTS ON COMMON FIXED POINTS WITH APPLICATIONS , 2008 .

[10]  L. Ciric,et al.  A generalization of Banach’s contraction principle , 1974 .

[11]  V. Berinde A CONVERGENCE THEOREM FOR SOME MEAN VALUE FIXED POINT ITERATION PROCEDURES , 2005 .

[12]  Vasile Berinde,et al.  APPROXIMATING FIXED POINTS OF WEAK '-CONTRACTIONS USING THE PICARD ITERATION , 2003 .

[13]  Vasile Berinde,et al.  Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators , 2004 .

[14]  Vasile Berinde,et al.  On the approximation of fixed points of weak contractive mappings , 2003 .

[15]  Tudor Zamfirescu,et al.  Fix point theorems in metric spaces , 1972 .

[16]  G. Jungck,et al.  Commuting Mappings and Fixed Points , 1976 .

[17]  Vasile Berinde,et al.  ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS , 2004 .

[18]  B. Rhoades Contractive definitions and continuity , 1988 .

[19]  R. Kannan,et al.  Some results on fixed points , 1968 .