Differences between t‐norms in fuzzy control

The application of conjunctive aggregation functions in fuzzy control systems with n inputs is discussed, and the effect of the choice of a continuous t‐norm in the inference phase for Takagi–Sugeno–Kang (TSK) systems is computed. A continuous t‐norm modeling AND connective in antecedent part of fuzzy rules can be reduced just to strict or nilpotent t‐norm. The isomorphism of strict (nilpotent) t‐norms enables simpler fitting of TSK fuzzy system parameters and reduces the computational complexity. Similar principle can also be used in the case of some noncommutative conjunctive aggregation functions modeling AND connective. The effect of the choice of a continuous t‐norm is then evaluated on well‐known case studies in fuzzy control, the Sinc function, and the urban traffic noise control system.

[1]  Yixin Diao,et al.  Using fuzzy control to maximize profits in service level management , 2002, IBM Syst. J..

[2]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[3]  菅野 道夫,et al.  Industrial applications of fuzzy control , 1985 .

[4]  Dov M. Gabbay,et al.  Fuzzy logics based on [0,1)-continuous uninorms , 2007, Arch. Math. Log..

[5]  Witold Pedrycz,et al.  Logic-Based Fuzzy Neurocomputing With Unineurons , 2006, IEEE Transactions on Fuzzy Systems.

[6]  Tsu-Tian Lee,et al.  Neural-network-based optimal fuzzy controller design for nonlinear systems , 2005, Fuzzy Sets Syst..

[7]  Chein-Chung Sun,et al.  Mixed H$_2$/H$_i$ region-based fuzzy controller design for continuous-time fuzzy systems , 2007 .

[8]  Luigi Fortuna,et al.  Neuro-fuzzy strategies for urban traffic noise monitoring , 1997 .

[9]  Cheng-Liang Chen,et al.  Theoretical analysis of crisp-type fuzzy logic controllers using various t-norm sum-gravity inference methods , 1998, IEEE Trans. Fuzzy Syst..

[10]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems , 2007, Int. J. Intell. Syst..

[11]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[12]  M. Komorníková Aggregation operators and additive generators , 2001 .

[13]  A. Mesiarová,et al.  k-lp-Lipschitz t-norms , 2007 .

[14]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[15]  Robert Patton Leland,et al.  Soft computing applications on a SR-30 turbojet engine , 2006, Fuzzy Sets Syst..

[16]  Šarūnas Raudys,et al.  Statistical and Neural Classifiers: An Integrated Approach to Design , 2012 .

[17]  M. F. Qureshi,et al.  Application of hybrid system control method for real-time power system stabilization , 2007, Fuzzy Sets Syst..

[18]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[19]  Giangiacomo Gerla Fuzzy Logic Programming and Fuzzy Control , 2005, Stud Logica.

[20]  Guoqing Chen,et al.  Retraction and Generalized Extension of Computing With Words , 2007, IEEE Transactions on Fuzzy Systems.

[21]  Magda Komorníková Aggregation Operators and Additive Generators , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[22]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[23]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[24]  Frank Klawonn,et al.  Foundations of fuzzy systems , 1994 .

[25]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[26]  Shinq-Jen Wu,et al.  Affine TS-model-based fuzzy regulating/servo control design , 2007, Fuzzy Sets Syst..

[27]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[28]  Salim Labiod,et al.  Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems , 2007, Fuzzy Sets Syst..

[29]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[30]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[31]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[32]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Witold Pedrycz,et al.  Fuzzy relational neural network , 2006, Int. J. Approx. Reason..

[34]  H. Ying,et al.  Deriving Analytical Input–Output Relationship for Fuzzy Controllers Using Arbitrary Input Fuzzy Sets and Zadeh Fuzzy AND Operator , 2006, IEEE Transactions on Fuzzy Systems.

[35]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems: Research Articles , 2007 .

[36]  Mohammad Hossein Fazel Zarandi,et al.  Development of a neuro-fuzzy controller for a steam generation plant using fuzzy cluster analysis , 2007, J. Intell. Fuzzy Syst..

[37]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[38]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..