VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop.

[1]  J. Massagué,et al.  Multimodality imaging of TGFβ signaling in breast cancer metastases , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Elizabeth Guruceaga,et al.  FactorY, a bioinformatic resource for genome-wide promoter analysis , 2009, Comput. Biol. Medicine.

[3]  L. Gold,et al.  TGFβ prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest , 2009 .

[4]  Samy Lamouille,et al.  TGF-β-induced epithelial to mesenchymal transition , 2009, Cell Research.

[5]  Guojun Sheng,et al.  Epithelial to mesenchymal transition during gastrulation: An embryological view , 2008, Development, growth & differentiation.

[6]  O. De Wever,et al.  Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. , 2008, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[7]  S. Peiró,et al.  Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: implications for tumor progression. , 2008, Experimental cell research.

[8]  S. Dooley,et al.  Transforming growth factor‐β and hepatocyte transdifferentiation in liver fibrogenesis , 2008, Journal of gastroenterology and hepatology.

[9]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[10]  J. Thiery,et al.  Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer , 2007, Clinical & Experimental Metastasis.

[11]  M. Emmert-Buck,et al.  Increased expression of VEGF121/VEGF165–189 ratio results in a significant enhancement of human prostate tumor angiogenesis , 2007, International journal of cancer.

[12]  Feng Chen,et al.  Smad7 Antagonizes Transforming Growth Factor β Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation , 2007, Molecular and Cellular Biology.

[13]  Malte Buchholz,et al.  Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. , 2007, Cancer research.

[14]  P. Gama,et al.  Transforming growth factor-beta, estrogen, and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium. , 2007, Cancer research.

[15]  T. Gress,et al.  Smad-Sp1 complexes mediate TGFbeta-induced early transcription of oncogenic Smad7 in pancreatic cancer cells. , 2006, Carcinogenesis.

[16]  F. Rojo,et al.  Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. , 2006, Histology and histopathology.

[17]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[18]  K. Desai,et al.  Prostate cancer and the genomic revolution: Advances using microarray analyses. , 2005, Mutation research.

[19]  C. Corless,et al.  Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. , 2005, The Journal of clinical investigation.

[20]  C. Heldin,et al.  TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. , 2005, Molecular biology of the cell.

[21]  Napoleone Ferrara,et al.  Vascular endothelial growth factor: basic science and clinical progress. , 2004, Endocrine reviews.

[22]  F. Bibeau,et al.  Roles of the Transcription Factors Snail and Slug During Mammary Morphogenesis and Breast Carcinoma Progression , 2004, Journal of Mammary Gland Biology and Neoplasia.

[23]  Angel Rubio,et al.  GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data , 2003, Bioinform..

[24]  K. Miyazono,et al.  Chromosomal Region Maintenance 1 (CRM1)-dependent Nuclear Export of Smad Ubiquitin Regulatory Factor 1 (Smurf1) Is Essential for Negative Regulation of Transforming Growth Factor-β Signaling by Smad7* , 2003, The Journal of Biological Chemistry.

[25]  K. Miyazono,et al.  Smurf1 Regulates the Inhibitory Activity of Smad7 by Targeting Smad7 to the Plasma Membrane* 210 , 2002, The Journal of Biological Chemistry.

[26]  Cheryl Jorcyk,et al.  Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. , 2002, Cancer research.

[27]  Lois E. H. Smith,et al.  Molecular profiling of angiogenesis markers. , 2002, The American journal of pathology.

[28]  G. Moreno-Bueno,et al.  Correlation of Snail expression with histological grade and lymph node status in breast carcinomas , 2002, Oncogene.

[29]  D. Horsfall,et al.  A potential autocrine role for vascular endothelial growth factor in prostate cancer. , 2002, Cancer research.

[30]  J. Simons,et al.  Angiogenesis and prostate cancer: identification of a molecular progression switch. , 2001, Cancer research.

[31]  H. Moses,et al.  Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration* , 2000, The Journal of Biological Chemistry.

[32]  R. Montironi,et al.  Vascular endothelial growth factor expression and capillary architecture in high‐grade PIN and prostate cancer in untreated and androgen‐ablated patients , 2000, The Prostate.

[33]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[34]  J. Epstein Precursor lesions to prostatic adenocarcinoma , 2008, Virchows Archiv.

[35]  L. Ellis,et al.  Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. , 2006, Cancer research.

[36]  Jeffrey E. Green,et al.  Development of PIN and prostate adenocarcinoma cell lines: a model system for multistage tumor progression. , 2002, Neoplasia.

[37]  H. Moses,et al.  Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. , 2001, Molecular biology of the cell.

[38]  D. Hanahan,et al.  Switch to the angiogenic phenotype during tumorigenesis. , 1991, Princess Takamatsu symposia.