Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype

Abstract  The whitefly Bemisia tabaci harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts, including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. In Israel, Rickettsia is found in both the B and Q of B. tabaci biotypes, and while all other secondary symbionts are located in the bacteriomes, Rickettsia can occupy most of the body cavity of the insect. We tested whether Rickettsia influences the biology of B. tabaci and found that exposing a Rickettsia‐containing population to increasing temperatures significantly increases its tolerance to heat shock that reached 40°C, compared to a Rickettsia‐free population. This increase in tolerance to heat shock was not associated with specific induction of heat‐shock protein gene expression; however, it was associated with reduction in Rickettsia numbers as was assessed by quantitative real‐time polymerase chain reaction and fluorescence in situ hybridization analyses. To assess the causes for thermotolerance when Rickettsia is reduced, we tested whether its presence is associated with the induction of genes required for thermotolerance. We found that under normal 25°C rearing temperature, genes associated with response to stress such as cytoskeleton genes are induced in the Rickettsia‐containing population. Thus, the presence of Rickettsia in B. tabaci under normal conditions induces the expression of genes required for thermotolerance that under high temperatures indirectly lead to this tolerance.

[1]  P. Buchner Endosymbiosis of Animals with Plant Microorganisms , 1965 .

[2]  M. Ghanim,et al.  Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  B. Haarer,et al.  Profilin is required for the normal timing of actin polymerization in response to thermal stress , 1996, FEBS letters.

[4]  R. Kopito,et al.  Aggresomes: A Cellular Response to Misfolded Proteins , 1998, The Journal of cell biology.

[5]  T. Perring,et al.  Courtship Behavior of Bemisia argentifolii (Hemiptera: Aleyrodidae) and Whitefly Mate Recognition , 2006 .

[6]  E. Benarroch Heat shock proteins , 2011, Neurology.

[7]  D. Frohlich,et al.  Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. , 2007, Molecular phylogenetics and evolution.

[8]  D. Gerling,et al.  Identification and Localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae) , 2006, Applied and Environmental Microbiology.

[9]  K. Bourtzis,et al.  Insect Symbiosis, Volume 2 , 2006 .

[10]  J. Greeff,et al.  Prevalence of Wolbachia Supergroups A and B in Bemisia tabaci (Hemiptera: Aleyrodidae) and Some of Its Natural Enemies , 2010, Journal of economic entomology.

[11]  M. Fujishima,et al.  The Endosymbiotic Bacterium Holospora obtusa Enhances Heat-Shock Gene Expression of the Host Paramecium caudatum , 2003, The Journal of eukaryotic microbiology.

[12]  A. Maxmen,et al.  Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress , 2002 .

[13]  H. Pelham Speculations on the functions of the major heat shock and glucose-regulated proteins , 1986, Cell.

[14]  M. Ghanim,et al.  The Transmission Efficiency of Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Is Correlated with the Presence of a Specific Symbiotic Bacterium Species , 2010, Journal of Virology.

[15]  Baoli Qiu,et al.  Prevalence of Endosymbionts in Bemisia tabaci Populations and Their In Vivo Sensitivity to Antibiotics , 2010, Current Microbiology.

[16]  R. Rossi,et al.  The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. , 2001, Free radical biology & medicine.

[17]  P. J. Barro,et al.  Host Plant and Biotype Density Interactions – Their Role in the Establishment of the Invasive B Biotype of Bemisia tabaci , 2006, Biological Invasions.

[18]  M. Ghanim,et al.  Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. , 2009, Insect biochemistry and molecular biology.

[19]  P. Liang,et al.  Molecular chaperones and the cytoskeleton. , 1997, Journal of cell science.

[20]  Thomas M. Perring,et al.  The Bemisia tabaci species complex , 2001 .

[21]  N. Moran,et al.  Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts , 2007, PLoS biology.

[22]  P. Baumann Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. , 2005, Annual review of microbiology.

[23]  H. Czosnek,et al.  Whitefly transmission of plant viruses , 2002 .

[24]  A. Purcell,et al.  Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi , 2000 .

[25]  T. Miyoshi,et al.  Wolbachia–mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta) , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[27]  S. Kontsedalov,et al.  Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). , 2004, Journal of economic entomology.

[28]  S. Kontsedalov,et al.  Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. , 2005, Archives of insect biochemistry and physiology.

[29]  R. Stouthamer,et al.  Wolbachia-induced parthenogenesis , 2000 .

[30]  M. Feder,et al.  Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. , 1999, Annual review of physiology.

[31]  M. Ghanim,et al.  Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. , 2009, Pest management science.

[32]  Y. Buckley,et al.  Refined Global Analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries , 2010 .

[33]  H. Ishikawa,et al.  Effects of heat treatment on the symbiotic system of an aphid mycetocyte , 1991 .

[34]  D. Gerling,et al.  Plant-mediated interactions between whiteflies, herbivores, and natural enemies. , 2008, Annual review of entomology.

[35]  M. Turelli,et al.  Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. , 1990, Genetics.

[36]  Ary A. Hoffmann,et al.  Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches , 2003 .

[37]  Jesper Givskov Sørensen,et al.  The evolutionary and ecological role of heat shock proteins , 2003 .

[38]  S. Lindquist,et al.  The role of heat-shock proteins in thermotolerance. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  M. Ghanim,et al.  Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex , 2010, Molecular ecology.

[40]  E. Craig,et al.  The heat shock response. , 1985, CRC critical reviews in biochemistry.

[41]  N. Moran,et al.  Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures , 2006, Proceedings of the Royal Society B: Biological Sciences.

[42]  B. Molitoris,et al.  Putting the actin cytoskeleton into perspective: pathophysiology of ischemic alterations. , 1997, The American journal of physiology.

[43]  M. Ghanim,et al.  Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci , 2007, Bulletin of Entomological Research.

[44]  M. S. Hunter,et al.  Inherited Bacteroidetes symbionts in arthropods , 2006 .