Protein structure determination in living cells by in-cell NMR spectroscopy

[1]  Hidekazu Hiroaki,et al.  High-resolution multi-dimensional NMR spectroscopy of proteins in human cells , 2009, Nature.

[2]  Jeffrey M. Macdonald,et al.  Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[3]  V. Dötsch,et al.  In-cell NMR spectroscopy. , 2005, Methods in enzymology.

[4]  Gerhard Wagner,et al.  Looking into live cells with in-cell NMR spectroscopy. , 2007, Journal of structural biology.

[5]  J. Ferrell,et al.  Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy , 2006, Nature Protocols.

[6]  M. Shirakawa,et al.  In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes , 2006, Journal of biomolecular NMR.

[7]  Gerhard Wagner,et al.  Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes , 2006, Proceedings of the National Academy of Sciences.

[8]  Gary J. Pielak,et al.  Macromolecular Crowding in the Escherichia coli Periplasm Maintains α-Synuclein Disorder , 2006 .

[9]  Alexander Shekhtman,et al.  Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR) , 2006, Nature Methods.

[10]  Volker Dötsch,et al.  In‐Cell NMR Spectroscopy , 2005, Methods in enzymology.

[11]  L. Spicer,et al.  Multidimensional NMR spectroscopy for protein characterization and assignment inside cells. , 2005, Journal of the American Chemical Society.

[12]  Martin Ester,et al.  Sequence analysis PSORTb v . 2 . 0 : Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis , 2004 .

[13]  A. Stern,et al.  Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. , 2004, Journal of magnetic resonance.

[14]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[15]  P. Ortiz de Montellano,et al.  Methyl groups as probes for proteins and complexes in in-cell NMR experiments. , 2004, Journal of the American Chemical Society.

[16]  Peter Güntert,et al.  Automated NMR protein structure calculation , 2003 .

[17]  Ke Wang,et al.  PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria , 2003, Nucleic Acids Res..

[18]  G. Pielak,et al.  FlgM gains structure in living cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[20]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[21]  V. Dötsch,et al.  Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. , 2001, Journal of the American Chemical Society.

[22]  V. Dötsch,et al.  High-resolution macromolecular NMR spectroscopy inside living cells. , 2001, Journal of the American Chemical Society.

[23]  L. Kay,et al.  Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. , 2000, Journal of molecular biology.

[24]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[25]  N. Hayashi,et al.  An expression system of rat calmodulin using T7 phage promoter in Escherichia coli. , 1998, Protein expression and purification.

[26]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[27]  Y. Thorstenson,et al.  Leaderless polypeptides efficiently extracted from whole cells by osmotic shock , 1997, Journal of bacteriology.

[28]  T Pawson,et al.  Selective methyl group protonation of perdeuterated proteins. , 1996, Journal of molecular biology.

[29]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[30]  P. Schmieder,et al.  Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain , 1994, Journal of biomolecular NMR.

[31]  P. Kraulis,et al.  Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. , 1994, Biochemistry.

[32]  P. J. Kraulis,et al.  ANSIG: A program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics , 1989, Journal of Magnetic Resonance (1969).

[33]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[34]  J. Skilling,et al.  Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments , 1987 .

[35]  John Skilling,et al.  Reconstruction of phase-sensitive two-dimensional NMR spectra by maximum entropy , 1986 .

[36]  J. Lippincott-Schwartz,et al.  Optimal isotope labelling for NMR protein structure determinations , 2006 .

[37]  R. Koradia,et al.  Point-centered domain decomposition for parallel molecular dynamics simulation , 2000 .

[38]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .