Generalized Parameter Extraction Method for Symbolic Analysis of Analog Circuits Containing Pathological Elements

This chapter gives a description of the extension of Generalized Parameter Extraction Method (GPEM) for symbolic analysis of large-scale analog circuits containing pathological elements. The brief overview of the parameter extraction approach is included. An algorithm implementing the concept of Higher Order Summative Cofactors (HOSC) for determinants computation of the pathological element-based circuits is proposed. In this chapter, we also present the hierarchical decomposition techniques of upward and downward analysis of electronic circuits by GPEM. The proposed techniques are used in freeware symbolic analyzer CirSym. Several examples are presented to illustrate the advantages of the GPEM applications.

[1]  Alex Doboli,et al.  A regularity-based hierarchical symbolic analysis method for large-scale analog networks , 2001, DATE '01.

[2]  A. C. Davies Topological solution of networks containing nullators and norators , 1966 .

[3]  G. M. Wierzba,et al.  Circuit level decomposition of networks with nullors for symbolic analysis , 1994 .

[4]  Konstantin Gorshkov,et al.  Parameters extraction technique for optimal network functions of SC circuits , 2015, 2015 International Siberian Conference on Control and Communications (SIBCON).

[5]  C. Sánchez-López,et al.  Pathological equivalents of CMs and VMs with multi-outputs , 2013 .

[6]  Guoyong Shi,et al.  Topological Approach to Automatic Symbolic Macromodel Generation for Analog Integrated Circuits , 2017, ACM Trans. Design Autom. Electr. Syst..

[7]  O. Guerra,et al.  Approximate Symbolic Analysis of Hierarchically Decomposed Analog Circuits , 2002 .

[8]  G. E. Alderson,et al.  Computer generation of symbolic network functions-A new theory and implementation , 1973 .

[9]  M. M. Hassoun,et al.  A hierarchical network approach to symbolic analysis of large-scale networks , 1995 .

[10]  Peddapullaiah Sannuti,et al.  Symbolic network analysis-An algebraic formulation , 1980 .

[11]  Konstantin Gorshkov,et al.  Topological analysis of active networks containing pathological mirror elements , 2013, 2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO).

[12]  M. Pierzchala,et al.  Generation of sequential symbolic network functions for large-scale networks by circuit reduction to two-port , 2001 .

[13]  M. Milic,et al.  General passive networks-Solvability, degeneracies, and order of complexity , 1974 .

[14]  H. Carlin,et al.  Singular Network Elements , 1964 .

[15]  Francisco V. Fernández,et al.  Pathological Element-Based Active Device Models and Their Application to Symbolic Analysis , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Vladimir F. Filaretov,et al.  The Generalization of the Extra Element Theorem for Symbolic Circuit Tolerance Analysis , 2011, J. Electr. Comput. Eng..

[17]  J. Starzyk,et al.  Flowgraph analysis of large electronic networks , 1986 .

[18]  V. Filaretov,et al.  Generalized parameter extraction method for analog circuit fault diagnosis , 2016, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM).

[19]  I. Asenova,et al.  Multiparameter symbolic sensitivity analysis of active circuits by using nullor model and modified Coates flow graph , 2012, 2012 ELEKTRO.

[20]  David Poole,et al.  Linear Algebra: A Modern Introduction , 2002 .

[21]  Benedykt Rodanski,et al.  Calculation of Symbolic Sensitivities for Large-Scale Circuits in the Sequence of Expressions Form via the Transimpedance Method , 2004 .

[22]  W. Feussner Zur Berechnung der Stromstärke in netzförmigen Leitern , .

[23]  Sotoudeh Hamedi-Hagh Characterization of active inductors with modified determinant expansion analysis , 2016, 2016 IEEE Dallas Circuits and Systems Conference (DCAS).

[24]  Ahmed M. Soliman,et al.  On the Voltage Mirrors and the Current Mirrors , 2002 .

[25]  Shun-Hsyung Chang,et al.  Singular Nullor and Mirror Elements for Circuit Design , 2016 .

[27]  Gabriel Kron,et al.  Diakoptics : the piecewise solution of large-scale systems , 1963 .

[28]  Shyh-Jye Jou,et al.  Hierarchical techniques for symbolic analysis of large electronic circuits , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[29]  Mourad Fakhfakh,et al.  Symbolic Analysis of Nullor-Based Circuits with the Two-Graph Technique , 2014, Circuits Syst. Signal Process..

[30]  S.-M. Chang,et al.  Matrix reduction and numerical approximation during computation techniques for symbolic analog circuit analysis , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[31]  V. Filaretov,et al.  Equivalent transformations of trees with nullor and mirror pathological elements , 2015, 2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE).

[32]  V. Filaretov,et al.  Transconductance realization of block-diagrams of electronic networks , 2008, 2008 International Conference on Signals and Electronic Systems.

[33]  Josef A. Nossek,et al.  Nullators and norators in circuits education: A benefit or an obstacle? , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[34]  Ahmed M. Soliman,et al.  Use of Mirror Elements in the Active Device Synthesis by Admittance Matrix Expansion , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Sheldon X.-D. Tan,et al.  Advanced Symbolic Analysis for VLSI Systems: Methods and Applications , 2014 .

[36]  Roman Dmytryshyn,et al.  Multimethodical Approach and Generation of Sequence of Expressions for Acceleration of Repetitive Analysis of Analog Circuits , 2002 .

[37]  Sheldon X.-D. Tan,et al.  Hierarchical approach to exact symbolic analysis of large analog circuits , 2005, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[38]  P. Lin Symbolic network analysis , 1991 .

[39]  Carlos Sánchez-López,et al.  Pathological Equivalents of Fully-Differential Active Devices for Symbolic Nodal Analysis , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Sheldon X.-D. Tan,et al.  Hierarchical symbolic analysis of analog integrated circuits viadeterminant decision diagrams , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[41]  Sławomir Lasota Models of Modern Active Devices for Effective and Always Cancelation-free Symbolic Analysis , 2016 .

[42]  Shun-Hsyung Chang,et al.  Circuit Synthesis Using Pathological Elements , 2014 .

[43]  Mourad Loulou,et al.  Design of Analog Circuits through Symbolic Analysis , 2018 .

[44]  C. Sánchez-López,et al.  Symbolic analysis of analog circuits containing voltage mirrors and current mirrors , 2010 .

[45]  Russell Holland Seacat A method of network analysis using residual networks , 1974 .

[46]  Jian Ma,et al.  Hierarchical Dynamic Thermal Management Method for High-Performance Many-Core Microprocessors , 2016, ACM Trans. Design Autom. Electr. Syst..

[47]  Vladimir Filaretov,et al.  Generalized Parameter Extraction Method in Symbolic Network Analysis , 2003 .

[48]  W. Feussner Ueber Stromverzweigung in netzförmigen Leitern , .

[49]  J. Barrows Extension of Fuessner's Method to Active Networks , 1966 .

[50]  Konstantin Gorshkov,et al.  A Cancellation-Free Symbolic Sensitivity Technique Based on Network Determinant Expansion , 2015 .

[51]  Takao Ozawa,et al.  Topological conditions for the solvability of linear active networks , 1976 .

[52]  J. Braun Topological analysis of networks containing nullators and norators , 1966 .

[53]  K. Gorshkov The simulation technique for large-scale tree structured interconnects , 2016, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM).

[54]  Reza Hashemian,et al.  Symbolic representation of network transfer functions using norator-nullator pairs , 1977 .