Measuring the ages of low‐mass stars and brown dwarfs

Age is among the most elusive, yet important, fundamental properties of low–mass stars and brown dwarfs. M dwarfs have main-sequence lifetimes that are estimated to be trillions of years, with little change in luminosity. In contrast, brown dwarfs cool and dim with time, resulting in a significant degeneracy between mass, age, and luminosity. Despite these inherent challenges, there have been recent efforts on both observational and theoretical fronts that may yield precise ages for low-mass stars and brown dwarfs. We feature some current observational efforts focused on estimating ages of these objects as presented in our Cool Stars 17 splinter session. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  G. Chabrier,et al.  OBSERVED LUMINOSITY SPREAD IN YOUNG CLUSTERS AND FU Ori STARS: A UNIFIED PICTURE , 2012, 1206.2374.

[2]  M. Shara,et al.  THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS , 2012, 1203.5543.

[3]  A. Reiners,et al.  RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I , 2011, 1111.7071.

[4]  Berkeley,et al.  THE FACTORY AND THE BEEHIVE. I. ROTATION PERIODS FOR LOW-MASS STARS IN PRAESEPE , 2011, 1107.4039.

[5]  T. Barman,et al.  Juvenile Ultracool Dwarfs , 2011, 1101.4231.

[6]  Gang Zhao,et al.  THE CHROMOSPHERIC ACTIVITY, AGE, METALLICITY, AND SPACE MOTIONS OF 36 WIDE BINARIES , 2011, 1101.3257.

[7]  Saurav Dhital,et al.  THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. I. DATA , 2011, 1101.1082.

[8]  J. Rostron,et al.  Stellar rotation in the Hyades and Praesepe: gyrochronology and braking time-scale , 2010, 1101.1222.

[9]  S. Barnes A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR–PERIOD DIAGRAMS , 2010 .

[10]  Caltech,et al.  THE LOWEST-MASS MEMBER OF THE β PICTORIS MOVING GROUP , 2010, 1005.2190.

[11]  David A. Golimowski,et al.  ERRATUM: “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD” (2010, AJ, 139, 2679) , 2010, 1004.4002.

[12]  Andrew A. West,et al.  COLORS AND KINEMATICS OF L DWARFS FROM THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.3402.

[13]  Ž. Ivezić,et al.  THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD , 2010 .

[14]  T. Barman,et al.  PHYSICAL PROPERTIES OF YOUNG BROWN DWARFS AND VERY LOW MASS STARS INFERRED FROM HIGH-RESOLUTION MODEL SPECTRA , 2009, 0911.3844.

[15]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[16]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[17]  A. Burgasser,et al.  YOUNG L DWARFS IDENTIFIED IN THE FIELD: A PRELIMINARY LOW-GRAVITY, OPTICAL SPECTRAL SEQUENCE FROM L0 TO L5 , 2008, 0812.0364.

[18]  I. Ribas,et al.  Stellar chronology with white dwarfs in wide binaries , 2008, Proceedings of the International Astronomical Union.

[19]  T. Barman,et al.  A Sample of Very Young Field L Dwarfs and Implications for the Brown Dwarf “Lithium Test” at Early Ages , 2008, 0808.3153.

[20]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[21]  K. Stassun,et al.  STELLAR ROTATION IN M35: MASS–PERIOD RELATIONS, SPIN-DOWN RATES, AND GYROCHRONOLOGY , 2008, 0805.1040.

[22]  Helmut Lammer,et al.  Influence of the evolving stellar X-ray luminosity distribution on exoplanetary mass loss , 2008 .

[23]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[24]  J. Bochanski,et al.  Using the Galactic Dynamics of M7 Dwarfs to Infer the Evolution of Their Magnetic Activity , 2006, astro-ph/0609001.

[25]  S. Hodgkin,et al.  The Monitor project: rotation of low-mass stars in the open cluster NGC 2547 , 2006, astro-ph/0702518.

[26]  Suzanne L. Hawley,et al.  The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems , 2005, astro-ph/0502305.

[27]  E. Guinan,et al.  Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1-1700 Å) , 2004, astro-ph/0412253.

[28]  Ben Zuckerman,et al.  Young Stars Near the Sun , 2004 .

[29]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[30]  James Liebert,et al.  Meeting the Cool Neighbors. V. A 2MASS-Selected Sample of Ultracool Dwarfs , 2003, astro-ph/0307429.

[31]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[32]  Pierre Brassard,et al.  The Potential of White Dwarf Cosmochronology , 2001 .

[33]  V. University,et al.  The Ages of Very Cool Hydrogen-rich White Dwarfs , 2000, astro-ph/0007031.

[34]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[35]  A. Chieffi,et al.  Intermediate-Mass Stars: Updated Models , 1999, astro-ph/9906030.

[36]  M. Giampapa,et al.  Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades , 1994 .

[37]  D. Soderblom,et al.  The chromospheric emission-age relation for stars of the lower main sequence and its implications for the star formation rate , 1991 .

[38]  D. C. Barry The Chromospheric Age Dependence of the Birthrate, Composition, Motions, and Rotation of Late F and G Dwarfs within 25 Parsecs of the Sun , 1988 .

[39]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .