The algorithmic aspects of the regularity lemma
暂无分享,去创建一个
Vojtech Rödl | Noga Alon | Raphael Yuster | Hanno Lefmann | Richard A. Duke | N. Alon | V. Rödl | R. Duke | H. Lefmann | R. Yuster
[1] Noga Alon,et al. A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.
[2] Noga Alon,et al. Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..
[3] Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem , 1986, SIAM J. Comput..
[4] Zoltán Füredi,et al. Exact solution of some Turán-type problems , 1987, J. Comb. Theory, Ser. A.
[5] V. Rödl,et al. On graphs with small subgraphs of large chromatic number , 1985, Graphs Comb..
[6] Vojtech Rödl. On universality of graphs with uniformly distributed edges , 1986, Discret. Math..
[7] Miklós Simonovits,et al. Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.
[8] Noga Alon,et al. AlmostH-factors in dense graphs , 1992, Graphs Comb..
[9] Wolfgang Maass,et al. On the communication complexity of graph properties , 1988, STOC '88.
[10] Richard M. Karp,et al. A fast parallel algorithm for the maximal independent set problem , 1985, JACM.
[11] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[12] Christos H. Papadimitriou,et al. ON GRAPH-THEORETIC LEMMATA AND COMPLEXITY CLASSES (Extended Abstract ) , 1990, FOCS 1990.
[13] Zoltán Füredi,et al. The maximum number of edges in a minimal graph of diameter 2 , 1992, J. Graph Theory.
[14] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[15] Richard H. Schelp,et al. Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.
[16] Noga Alon,et al. A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.
[17] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[18] Noga Alon,et al. A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[19] Vojtech Rödl,et al. The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory, Ser. B.
[20] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[21] B. Bollobás,et al. Extremal Graphs without Large Forbidden Subgraphs , 1978 .
[22] Vojtech Rödl,et al. On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.
[23] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.