Streaming compression of tetrahedral volume meshes

Geometry processing algorithms have traditionally assumed that the input data is entirely in main memory and available for random access. This assumption does not scale to large data sets, as exhausting the physical memory typically leads to IO-inefficient thrashing. Recent works advocate processing geometry in a "streaming" manner, where computation and output begin as soon as possible. Streaming is suitable for tasks that require only local neighbor information and batch process an entire data set.We describe a streaming compression scheme for tetrahedral volume meshes that encodes vertices and tetrahedra in the order they are written. To keep the memory footprint low, the compressor is informed when vertices are referenced for the last time (i.e. are finalized). The compression achieved depends on how coherent the input order is and how many tetrahedra are buffered for local reordering. For reasonably coherent orderings and a buffer of 10,000 tetrahedra, we achieve compression rates that are only 25 to 40 percent above the state-of-the-art, while requiring drastically less memory resources and less than half the processing time.

[1]  Craig Gotsman,et al.  Optimized compression of triangle mesh geometry using prediction trees , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[2]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[3]  Wolfgang Straßer,et al.  Tetrahedral mesh compression with the cut-border machine , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  Tulika Mitra,et al.  On-the-Fly rendering of losslessly compressed irregular volume data , 2000, IEEE Visualization.

[5]  Konrad Polthier,et al.  FreeLence ‐ Coding with Free Valences , 2005, Comput. Graph. Forum.

[6]  Martin Isenburg,et al.  Compressing polygon mesh geometry with parallelogram prediction , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Martin Isenburg,et al.  Compressing hexahedral volume meshes , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[9]  Martin Isenburg,et al.  Streaming compression of triangle meshes , 2005, SIGGRAPH '05.

[10]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[11]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[12]  Leif Kobbelt,et al.  A Stream Algorithm for the Decimation of Massive Meshes , 2003, Graphics Interface.

[13]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[14]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.

[15]  Martin Isenburg,et al.  Large mesh simplification using processing sequences , 2003, IEEE Visualization, 2003. VIS 2003..

[16]  Martin Isenburg,et al.  Streaming computation of Delaunay triangulations , 2006, ACM Trans. Graph..

[17]  Nasir D. Memon,et al.  Geometry compression of tetrahedral meshes using optimized prediction , 2005, 2005 13th European Signal Processing Conference.

[18]  Martin Isenburg,et al.  Lossless compression of predicted floating-point geometry , 2005, Comput. Aided Des..

[19]  Urs Bischoff,et al.  TetStreamer: compressed back-to-front transmission of Delaunay tetrahedra meshes , 2005, Data Compression Conference.

[20]  Valerio Pascucci,et al.  Streaming Simplification of Tetrahedral Meshes , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jarek Rossignac,et al.  Grow & fold: compression of tetrahedral meshes , 1999, SMA '99.

[22]  M. Isenburg Compressing Polygon Mesh Connectivity with Degree Duality Prediction , 2002, Graphics Interface.

[23]  Martin Isenburg,et al.  Out-of-core compression for gigantic polygon meshes , 2003, ACM Trans. Graph..

[24]  Martin Isenburg,et al.  Encoding volumetric grids for streaming isosurface extraction , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[25]  David J. Kriegman,et al.  Compressing large polygonal models , 2001, Proceedings Visualization, 2001. VIS '01..

[26]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.