A multi-instrument comparison of integrated water vapour measurements at a high latitude site

We compare measurements of integrated water vapour (IWV) over a subarctic site (Kiruna, Northern Sweden) from five different sensors and retrieval methods: Radiosondes, Global Positioning System (GPS), ground-based Fourier-transform infrared (FTIR) spectrometer, groundbased microwave radiometer, and satellite-based microwave radiometer (AMSU-B). Additionally, we compare also to ERA-Interim model reanalysis data. GPS-based IWV data have the highest temporal coverage and resolution and are chosen as reference data set. All datasets agree reasonably well, but the ground-based microwave instrument only if the data are cloud-filtered. We also address two issues that are general for such intercomparison studies, the impact of different lower altitude limits for the IWV integration, and the impact of representativeness error. We develop methods for correcting for the former, and estimating the random error contribution of the latter. A literature survey reveals that reported systematic differences between different techniques are study-dependent and show no overall consistent pattern. Further improving the absolute accuracy of IWV measurements and providing climate-quality time series therefore remain challenging problems.

[1]  Marie-Noëlle Bouin,et al.  Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa , 2007 .

[2]  V. John,et al.  Correction to “Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes” , 2011 .

[3]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[4]  João Francisco Galera Monico,et al.  Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region , 2007 .

[5]  Michael Krystek,et al.  A weighted total least-squares algorithm for fitting a straight line , 2007 .

[6]  Georg Heygster,et al.  Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Viju O. John,et al.  Comparison of microwave satellite humidity data and radiosonde profiles: a survey of European stations , 2005 .

[8]  Jan-Peter Muller,et al.  Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements , 2003 .

[9]  Per Jarlemark,et al.  Ground-Based GPS for Validation of Climate Models: The Impact of Satellite Antenna Phase Center Variations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  C. Rinsland,et al.  Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements , 2004 .

[11]  Christian Melsheimer,et al.  Integrated water vapor above Ny Ålesund, Spitsbergen: a multi-sensor intercomparison , 2008 .

[12]  R. Saunders,et al.  Three-Way Error Analysis between AATSR, AMSR-E, and In Situ Sea Surface Temperature Observations , 2008 .

[13]  Tom Gardiner,et al.  Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products , 2010 .

[14]  Matt A. King,et al.  Long GPS coordinate time series: Multipath and geometry effects , 2009 .

[15]  Viju O. John,et al.  Comparison of microwave satellite humidity data and radiosonde profiles : a case study , 2004 .

[16]  Isao Naito,et al.  Comparisons of GPS‐derived precipitable water vapors with radiosonde observations in Japan , 2000 .

[17]  Clemens Simmer,et al.  A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere , 2005 .

[18]  H. Kahle,et al.  Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurements , 1997 .

[19]  Ed R. Westwater,et al.  The accuracy of water vapor and cloud liquid determination by dual‐frequency ground‐based microwave radiometry , 1978 .

[20]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[21]  V. John,et al.  On the Importance of Vaisala RS92 Radiosonde Humidity Corrections for a Better Agreement between Measured and Modeled Satellite Radiances , 2012 .

[22]  Jan M. Johansson,et al.  The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour , 2011 .

[23]  D. Sonntag,et al.  Advancements in the field of hygrometry , 1994 .

[24]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[25]  T. Blumenstock,et al.  Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/01 , 2005 .

[26]  Norman T. O'Neill,et al.  Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska , 2003 .

[27]  S. Östman A multi-instrument comparison study of integrated water vapor over Kiruna, Sweden , 2010 .

[28]  Viju O. John,et al.  Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes , 2010 .

[29]  Gunnar Elgered,et al.  Trends in the Atmospheric Water Vapor Content From Ground-Based GPS: The Impact of the Elevation Cutoff Angle , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Tim J. Hewison,et al.  Radiometric characterization of AMSU-B , 1995 .

[31]  M. Schneider,et al.  Ground-based FTIR water vapour profile analyses , 2009 .

[32]  Matthias Schneider,et al.  Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92 , 2010 .

[33]  Gunnar Elgered,et al.  Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden , 2012, Journal of Geodesy.

[34]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[35]  Tobias Nilsson,et al.  Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data , 2008 .

[36]  V. John,et al.  An upper tropospheric humidity data set from operational satellite microwave data , 2008 .

[37]  Brett Candy,et al.  Understanding intersatellite biases of microwave humidity sounders using global simultaneous nadir overpasses , 2012 .

[38]  Tim J. Hewison,et al.  Intercomparison of integrated water vapour measurements , 2006 .

[39]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[40]  Ralf Sussmann,et al.  Technical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network - first examples for long-term records and station trends , 2009 .