Optimization of Information Gain in Multifidelity High-Speed Pressure Predictions

The objective of multifidelity modeling is to achieve both accurate and efficient predictions by combining high- and low-fidelity models. A flexible approach considering additive, multiplicative, a...

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[3]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[4]  Jack J. McNamara,et al.  Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow , 2010 .

[5]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[6]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[7]  R. Haftka,et al.  Review of multi-fidelity models , 2016, Advances in Computational Science and Engineering.

[8]  S. Michael Spottswood,et al.  Aerothermoelastic experimental design for the AEDC/VKF Tunnel C: Challenges associated with measuring the response of flexible panels in high-temperature, high-speed wind tunnels , 2019, Journal of Sound and Vibration.

[9]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[10]  Xun Huan,et al.  Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..

[11]  Holt Ashley,et al.  Piston Theory-A New Aerodynamic Tool for the Aeroelastician , 1956 .

[12]  Sankaran Mahadevan,et al.  Selection of model discrepancy priors in Bayesian calibration , 2014, J. Comput. Phys..

[13]  Nam H. Kim,et al.  Issues in Deciding Whether to Use Multifidelity Surrogates , 2019, AIAA Journal.

[14]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[15]  Sankaran Mahadevan,et al.  Sensor placement for calibration of spatially varying model parameters , 2017, J. Comput. Phys..

[16]  Erin C. DeCarlo,et al.  Quantifying Model Discrepancy in Time-Dependent, Coupled Analyses , 2018, AIAA Journal.

[17]  J.W. Bandler,et al.  Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.

[18]  Sankaran Mahadevan,et al.  Multi-fidelity approach to dynamics model calibration , 2016 .

[19]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[20]  Zhen Hu,et al.  Calibration experimental design considering field response and model uncertainty , 2017 .

[21]  Theresa Dawn Robinson,et al.  Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping , 2008 .