Inflation models and observation

We consider small-field models, which invoke the usual framework for the effective field theory, and large-field models, which go beyond this. Present and future possibilities for discriminating between the models are assessed, on the assumption that the primordial curvature perturbation is generated during inflation. With PLANCK data, the theoretical and observational uncertainties on the spectral index will be comparable, providing useful discrimination between small-field models. Further discrimination between models may come later through the tensor fraction, the running of the spectral index and non-Gaussianity.

[1]  Jihn E. Kim,et al.  Completing natural inflation , 2004, hep-ph/0409138.

[2]  Assisted inflation , 1998, astro-ph/9804177.

[3]  P. Binétruy,et al.  D-term inflation , 1996, hep-ph/9606342.

[4]  D. Lyth,et al.  Cosmology with a TeV mass Higgs field breaking the grand-unified-theory gauge symmetry. , 1995, Physical Review Letters.

[5]  S. Dodelson,et al.  Cosmic microwave background measurements can discriminate among inflation models , 1997, astro-ph/9702166.

[6]  How long before the end of inflation were observable perturbations produced , 2003, astro-ph/0305263.

[7]  A. Starobinsky,et al.  Spectra of Perturbations Produced by Double Inflation with an Intermediate Matter-Dominated Stage , 1992 .

[8]  M. Axenides,et al.  Hybrid inflation without flat directions and without primordial black holes , 2003, hep-ph/0310194.

[9]  K. Enqvist,et al.  Non-Gaussian perturbations in hybrid inflation , 2004, hep-ph/0405103.

[10]  Andrei Linde Axions in inflationary cosmology , 1991 .

[11]  J. Frieman,et al.  Natural inflation with pseudo Nambu-Goldstone bosons. , 1990, Physical review letters.

[12]  Misao Sasaki,et al.  A General Analytic Formula for the Spectral Index of the Density Perturbations Produced during Inflation. , 1995 .

[13]  Copeland,et al.  False vacuum inflation with Einstein gravity. , 1994, Physical review. D, Particles and fields.

[14]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[15]  Fayet-Iliopoulos terms in supergravity and cosmology , 2004, hep-th/0402046.

[16]  Inflation: Flow, fixed points and observables to arbitrary order in slow roll , 2002, astro-ph/0206032.

[17]  Global fits for the spectral index of the cosmological curvature perturbation , 2000, astro-ph/0008165.

[18]  J. Candia,et al.  Cosmic ray spectrum and anisotropies from the knee to the second knee , 2003, astro-ph/0302082.

[19]  A. Mazumdar,et al.  Non-Gaussianity from instant and tachyonic preheating , 2005, hep-ph/0501076.

[20]  Karim A. Malik,et al.  A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.

[21]  Searching for a holographic connection between dark energy and the low l CMB multipoles , 2004, astro-ph/0409275.

[22]  G. Lazarides,et al.  Baryogenesis and the gravitino problem in superstring models. , 1986, Physical review letters.

[23]  Large scale structure and supersymmetric inflation without fine tuning. , 1994, Physical review letters.

[24]  D. Lyth,et al.  Hilltop inflation , 2005, hep-ph/0502047.

[25]  Higher order corrections to primordial spectra from cosmological inflation , 2001, astro-ph/0106020.

[26]  Michael S. Turner,et al.  Kinematic constraints to the key inflationary observables , 2001 .

[27]  Low-scale inflation , 2001, hep-ph/0103243.

[28]  Karim A. Malik Gauge-invariant perturbations at second order: multiple scalar fields on large scales , 2005, astro-ph/0506532.

[29]  Gaillard,et al.  Candidates for the inflaton field in superstring models. , 1986, Physical review. D, Particles and fields.

[30]  Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. , 1992, Physical review. D, Particles and fields.

[31]  T. Moroi,et al.  The masses of weakly-coupled scalar fields in the early Universe , 2004, hep-ph/0402174.

[32]  D. Lyth Constraints on TeV-scale hybrid inflation and comments on non-hybrid alternatives 1 A subset of the , 1999, hep-ph/9908219.

[33]  Stewart Inflation, supergravity, and superstrings. , 1994, Physical review. D, Particles and fields.

[34]  M. Soljačić,et al.  Supernatural inflation: inflation from supersymmetry with no (very) small parameters , 1995, hep-ph/9512439.

[35]  The Effective Potential of the N=0* Yang-Mills Theory , 2004, hep-th/0402215.

[36]  A. Melchiorri,et al.  Running-mass inflation model and WMAP , 2004, astro-ph/0408129.

[37]  Alexander Vilenkin,et al.  Birth of inflationary universes , 1983 .

[38]  L. Verde,et al.  Considerations in optimizing CMB polarization experiments to constrain inflationary physics , 2005, astro-ph/0506036.

[39]  Takahiro Tanaka,et al.  SUPER-HORIZON SCALE DYNAMICS OF MULTI-SCALAR INFLATION , 1998, gr-qc/9801017.

[40]  Andrei Linde Primordial inflation without primodial monopoles , 1983 .

[41]  Andrei Linde,et al.  Racetrack Inflation , 2004, hep-th/0406230.

[42]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[43]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[44]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[45]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[46]  C. Burgess,et al.  Inflation in realistic D-brane models , 2004, hep-th/0403119.

[47]  A. Melchiorri,et al.  New constraints on the running-mass inflation model. , 2002, hep-ph/0210395.

[48]  Successful modular cosmology , 2003, hep-ph/0304127.

[49]  F. Bernardeau,et al.  Modulated fluctuations from hybrid inflation , 2004, astro-ph/0403315.

[50]  Moore,et al.  Modular cosmology. , 1995, Physical review. D, Particles and fields.

[51]  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[52]  A. Liddle,et al.  Reconstructing the inflaton potential—an overview , 1995, astro-ph/9508078.

[53]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[54]  Andrei Linde,et al.  Hybrid inflation. , 1993, Physical review. D, Particles and fields.

[55]  D. Lyth Non-renormalizable terms and M theory during inflation , 1997, hep-ph/9710347.

[56]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[57]  A. Liddle,et al.  COBE, gravitational waves, inflation and extended inflation , 1992, astro-ph/9208007.

[58]  A. B. Goncharov,et al.  Chaotic inflation in supergravity , 1984 .

[59]  M. Dine,et al.  An Inflaton Candidate in Gauge Mediated Supersymmetry Breaking , 1997, hep-ph/9705386.

[60]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[61]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[62]  David H. Lyth,et al.  Particle physics models of inflation and the cosmological density perturbation , 1999 .

[63]  Lyth,et al.  Thermal inflation and the moduli problem. , 1995, Physical review. D, Particles and fields.

[64]  S. Weinberg The Quantum Theory of Fields: AUTHOR INDEX , 1995 .

[65]  Hodges,et al.  Arbitrariness of inflationary fluctuation spectra. , 1990, Physical review. D, Particles and fields.