L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations
暂无分享,去创建一个
[1] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[2] Masayoshi Tsutsumi,et al. On solutions of some doubly nonlinear degenerate parabolic equations with absorption , 1988 .
[3] M. Madaune-Tort,et al. UNICITEN DES SOLUTIONS FAIBLES D'EQUATIONS DE DIFFUSION-CONVECTION , 1994 .
[4] J. Carrillo. On the uniqueness of the solution of the evolution dam problem , 1994 .
[5] Juan Luis Vázquez,et al. Travelling waves and finite propagation in a reaction-diffusion equation , 1991 .
[6] L. A. Peletier,et al. The cauchy problem for an equation in the theory of infiltration , 1976 .
[7] K. Hoffmann,et al. Free Boundary Value Problems , 1990 .
[8] A. S. Kalashnikov. Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations , 1987 .
[9] L. A. Peletier,et al. Large time behaviour of solutions of the porous media equation with absorption , 1986 .
[10] A. Visintin,et al. On nonstationary flow through porous media , 1984 .
[11] A. I. Vol'pert,et al. Cauchy's Problem for Degenerate Second Order Quasilinear Parabolic Equations , 1969 .
[12] Stephan Luckhaus,et al. Quasilinear elliptic-parabolic differential equations , 1983 .
[13] P. Knabner,et al. Solute transport in porous media with equilibrium and non-equilibrium multiple-site adsorpition: Travelling weaves. , 1991 .
[14] S. Kamin. Source-type solutions for equations of nonstationary filtration , 1978 .