Fluvial Sediment-transport Processes and Morphology

Rivers convey water and sediment from catchments to the coast through channels that adapt to these flows. Society's concerns about flood management and the potential effects of climate change must thus be matched with knowledge and appropriate management of fluvial sediment processes and the dynamic behaviour of river channels. This paper presents a synthesis of recent developments in our understanding of fluvial sediment processes and morphology, with an additional emphasis on the works of New Zealand researchers. We present frameworks and tools for predicting and interpreting these processes, from small to large scales, and also potential changes in morphology and in-channel sediment storage. The understanding derived from analyses of grain-scale concepts is presented in the context of larger-scale processes and also other aspects of the sediment-flux pathway from catchment to coast. The paper finishes with some comments on present issues and recommendations for research efforts.

[1]  P. Wilcock,et al.  Surface-based Transport Model for Mixed-Size Sediment , 2003 .

[2]  Iehisa Nezu,et al.  Turbulence in open-channel flows , 1993 .

[3]  C. Paola,et al.  Probabilistic Exner Sediment Continuity Equation for Mixtures with No Active Layer , 2000 .

[4]  Gregory E. Tucker,et al.  Hillslope processes, drainage density, and landscape morphology , 1998 .

[5]  R. Millar Theoretical regime equations for mobile gravel-bed rivers with stable banks , 2005 .

[6]  V. Nikora,et al.  Bed load transport by bed form migration , 2012, Acta Geophysica.

[7]  N. Cheng Simplified Settling Velocity Formula for Sediment Particle , 1997 .

[8]  C. Yang,et al.  Comparisons of Selected Bed‐Material Load Formulas , 1991 .

[9]  Andrew Simon,et al.  Measurement and Analysis of Alluvial Channel Form , 2005 .

[10]  M. Isaacson,et al.  Loose boundary hydraulics , 1991 .

[11]  R. Soulsby Dynamics of marine sands , 1997 .

[12]  V. Nikora,et al.  A unifying framework for particle entrainment , 2008 .

[13]  D. Knighton Fluvial Forms and Processes: A New Perspective , 1998 .

[14]  I. Rodríguez‐Iturbe,et al.  A coupled channel network growth and hillslope evolution model: 1. Theory , 1991 .

[15]  D. B. Simons,et al.  Bedload equation for ripples and dunes , 1965 .

[16]  Charles C. S. Song,et al.  Theory of Minimum Rate of Energy Dissipation , 1979 .

[17]  Thomas Blench,et al.  Regime behaviour of canals and rivers , 1957 .

[18]  W. Dietrich,et al.  Geomorphic transport laws for predicting landscape form and dynamics , 2013 .

[19]  P. Julien,et al.  Closure of "Sand-Dune Geometry of Large Rivers During Floods" , 1997 .

[20]  C. Yang Unit Stream Power Equation for Gravel , 1984 .

[21]  G. Nanson,et al.  Hydraulic geometry and maximum flow efficiency as products of the principle of least action , 2000 .

[22]  S. Schumm,et al.  Variability of River Patterns , 1972 .

[23]  G. Nanson,et al.  Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels , 2008 .

[24]  D. Montgomery,et al.  Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model , 1993, The Journal of Geology.

[25]  G A Griffiths,et al.  Hydraulic geometry relationships of some New Zealand gravel bed rivers , 1980 .

[26]  Pierre Y. Julien,et al.  Erosion and Sedimentation: Physical properties and dimensional analysis , 1995 .

[27]  Chih Ted Yang,et al.  Unit stream power equations for total load , 1979 .

[28]  A. Roy,et al.  Secondary Flows in Rivers: Theoretical Framework, Recent Advances, and Current Challenges , 2012 .

[29]  Risk of Sediment Erosion and Suspension in Turbulent Flows , 2001 .

[30]  R. Bettess TECHNICAL NOTE. INITIATION OF SEDIMENT TRANSPORT IN GRAVEL STREAMS. , 1984 .

[31]  L. B. Leopold,et al.  The hydraulic geometry of stream channels and some physiographic implications , 1953 .

[32]  K. Fryirs,et al.  Geomorphology and River Management: Applications of the River Styles Framework , 2005 .

[33]  Claude Michel Discussion of "The Legend of A. F. Shields" , 2000 .

[34]  R. Bagnold The nature of saltation and of ‘bed-load’ transport in water , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  William Robert Brownlie,et al.  Prediction of flow depth and sediment discharge in open channels , 1982 .

[36]  J. Smith,et al.  Predicting the migration rates of subaqueous dunes , 1996 .

[37]  R. Woods,et al.  Freshwaters of New Zealand , 2004 .

[38]  G. Parker HYDRAULIC GEOMETRY OF ACTIVE GRAVEL RIVERS , 1979 .

[39]  Jurjen A. Battjes,et al.  Measurement of Fluctuating Pressures on Coarse Bed Material , 2005 .

[40]  Howard H. Chang,et al.  Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern , 2004 .

[41]  F. Engelund,et al.  A monograph on sediment transport in alluvial streams , 1967 .

[42]  C G Ilo,et al.  RESISTANCE TO FLOW IN ALLUVIAL CHANNELS , 1975 .

[43]  B. Eaton,et al.  Channel patterns: Braided, anabranching, and single-thread , 2010 .

[44]  Graeme M. Smart,et al.  Sediment Transport Formula for Steep Channels , 1984 .

[45]  R. Müller,et al.  Formulas for Bed-Load transport , 1948 .

[46]  Gary Brierley,et al.  Landscape connectivity: the geographic basis of geomorphic applications , 2006 .

[47]  L. Rijn Sediment Transport, Part II: Suspended Load Transport , 1984 .

[48]  J. Aberle,et al.  The influence of roughness structure on flow resistance on steep slopes , 2003 .

[49]  G. Griffiths Stable-channel design in alluvial rivers , 1983 .

[50]  F. Henderson Open channel flow , 1966 .

[51]  S. Schumm The Fluvial System , 1977 .

[52]  R. Bagnold An empirical correlation of bedload transport rates in flumes and natural rivers , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  R. Hey,et al.  Regime equations for natural meandering cobble and gravel bed rivers , 2011 .

[54]  I. Jowett,et al.  River morphology and management in New Zealand , 1999 .

[55]  L. B. Leopold,et al.  River channel patterns: Braided, meandering, and straight , 1957 .

[56]  Ethan J. Kubatko,et al.  Exact Discontinuous Solutions of Exner’s Bed Evolution Model: Simple Theory for Sediment Bores , 2007 .

[57]  John D. Fenton,et al.  Initial movement of grains on a stream bed: the effect of relative protrusion , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  E. Andrews Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado , 1984 .

[59]  E. W. Lane The Importance of Fluvial Morphology in Hydraulic Engineering , 1955 .

[60]  R. Millar Influence of bank vegetation on alluvial channel patterns , 2000 .

[61]  R. Soulsby,et al.  Threshold of Sediment Motion in Coastal Environments , 1997 .

[62]  Howard H. Chang Minimum stream power and river channel patterns , 1979 .

[63]  B. Clausen,et al.  How high are bed-moving flows in New Zealand rivers? , 2004 .

[64]  G. Nanson,et al.  Hydraulic geometry of straight alluvial channels and the principle of least action , 2002 .

[65]  Helmut Habersack,et al.  Pressure fluctuations and gravel entrainment in rivers , 2007 .

[66]  G. Jirka,et al.  4 Pressure- and velocity-measurements above and within a porous gravel bed at the threshold of stability , 2007 .

[67]  G. Parker,et al.  Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database , 2006 .

[68]  Chih Ted Yang,et al.  Minimum Unit Stream Power and Fluvial Hydraulics , 1976 .

[69]  Ton H. Snelder,et al.  MULTISCALE RIVER ENVIRONMENT CLASSIFICATION FOR WATER RESOURCES MANAGEMENT 1 , 2002 .

[70]  A. J. Sutherland,et al.  Extremal hypotheses for river behavior , 1983 .

[71]  V. Nikora,et al.  Exner equation: A continuum approximation of a discrete granular system , 2009 .

[72]  A. Simon,et al.  Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary materials in controlling channel response , 2006 .

[73]  D. Rosgen Applied River Morphology , 1996 .

[74]  I. Jowett Hydraulic geometry of New Zealand rivers and its use as a preliminary method of habitat assessment , 1998 .

[75]  S. Coleman Fluvial sediment transport and morphology: views from upstream and midstream , 2010 .

[76]  Howard H. Chang Fluvial Processes in River Engineering , 1988 .

[77]  T. Davies,et al.  Geomorphic Constraints on the Management of Bedload-dominated Rivers , 2006 .

[78]  Timothy R. H. Davies,et al.  Resistance to flow past deformable boundaries , 1980 .

[79]  C. Thorne,et al.  Stable Channels with Mobile Gravel Beds , 1986 .

[80]  Nian-Sheng Cheng,et al.  Application of Incomplete Self-similarity Argument for Predicting Bed-material Load Discharge , 2011 .

[81]  G. Parker Transport of Gravel and Sediment Mixtures , 2013 .

[82]  C. Yang Incipient Motion and Sediment Transport , 1973 .

[83]  V. Voller,et al.  A generalized Exner equation for sediment mass balance , 2005 .

[84]  Marcelo Horacio Garcia,et al.  Sedimentation engineering : processes, measurements, modeling, and practice , 2008 .

[85]  D. Rosgen A classification of natural rivers , 1994 .

[86]  C. C. Watson,et al.  Incised Channels: Morphology, Dynamics, and Control , 1984 .

[87]  M. J. Crickmore,et al.  Effect of Flume Width on Bed-Form Characteristics , 1970 .

[88]  M. Mosley Semi-determinate hydraulic geometry of river channels, South Island, New Zealand , 1981 .

[89]  A. Shields,et al.  Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung , 1936 .

[90]  D. Rubin,et al.  Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations , 1980 .

[91]  Bruce W. Melville,et al.  Case Study: New Zealand Bridge Scour Experiences , 2001 .