A Three-Dimensional Transient Thermal Model for Machining

[1]  Yusuf Altintas,et al.  Unified cutting force model for turning, boring, drilling and milling operations , 2012 .

[2]  Yusuf Altintas,et al.  Manufacturing Automation: Index , 2012 .

[3]  Ismail Lazoglu,et al.  Modeling of 3D temperature fields for oblique machining , 2012 .

[4]  Hisataka Tanaka,et al.  Temperature Variation in the Cutting Tool in End Milling , 2011 .

[5]  Durul Ulutan,et al.  Three-dimensional temperature predictions in machining processes using finite difference method , 2009 .

[6]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[7]  D. J. Richardson,et al.  Modelling of cutting induced workpiece temperatures for dry milling , 2006 .

[8]  Paul Mativenga,et al.  Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining , 2006 .

[9]  Hui Song,et al.  Thermal modeling for white layer predictions in finish hard turning , 2005 .

[10]  Wit Grzesik,et al.  Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels , 2004 .

[11]  Yusuf Altintas,et al.  Prediction of tool and chip temperature in continuous and interrupted machining , 2002 .

[12]  K. Mills Recommended Values of Thermophysical Properties for Selected Commercial Alloys , 2001 .

[13]  R. Komanduri,et al.  Thermal modeling of the metal cutting process — Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source , 2001 .

[14]  R. Komanduri,et al.  Thermal modeling of the metal cutting process — Part II: temperature rise distribution due to frictional heat source at the tool–chip interface , 2001 .

[15]  Ranga Komanduri,et al.  Thermal modeling of the metal cutting process: Part I — Temperature rise distribution due to shear plane heat source , 2000 .

[16]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[17]  Tuğrul Özel,et al.  Process simulation using finite element method — prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling , 2000 .

[18]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[19]  T. Kitagawa,et al.  Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti6Al6V2Sn , 1997 .

[20]  Albert J. Shih,et al.  Finite Element Simulation of Orthogonal Metal Cutting , 1995 .

[21]  Shiv Gopal Kapoor,et al.  An Analytical Model for Prediction of Tool Temperature Fields during Continuous and Interrupted Cutting , 1994 .

[22]  A. Ali,et al.  Tool Temperatures in Interrupted Metal Cutting , 1992 .

[23]  S. Lin,et al.  A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting , 1992 .

[24]  D. A. Stephenson Assessment of Steady-State Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data , 1991 .

[25]  J. Strenkowski,et al.  Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting , 1990 .

[26]  P. K. Venuvinod,et al.  Estimation of rake temperatures in free oblique cutting , 1986 .

[27]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer , 1984 .

[28]  E.J.A. Armarego,et al.  Temperature Prediction in Orthogonal Cutting with a Finite Difference Approach , 1981 .

[29]  M. G. Stevenson,et al.  Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining , 1974 .

[30]  R. C. Brewer,et al.  ON THE THEORETICAL DETERMINATION OF THE TEMPERATURE FIELD IN ORTHOGONAL MACHINING , 1965 .

[31]  A C Rapier,et al.  A theoretical investigation of the temperature distribution in the metal cutting process , 1954 .