The Merit of High-Frequency Data in Portfolio Allocation

This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown.

[1]  Stéphane Mallat,et al.  Locally stationary covariance and signal estimation with macrotiles , 2003, IEEE Trans. Signal Process..

[2]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[3]  S. Mallat,et al.  Adaptive covariance estimation of locally stationary processes , 1998 .

[4]  P. Bickel,et al.  Large Vector Auto Regressions , 2011, 1106.3915.

[5]  Matteo Marsili,et al.  Rollover Risk, Network Structure and Systemic Financial Crises , 2009 .

[6]  Markus Reiß,et al.  Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise , 2010, 1001.3006.

[7]  R. Herrera,et al.  Extreme value models in a conditional duration intensity framework , 2011 .

[8]  K. Ensor,et al.  Covariance Estimation in Dynamic Portfolio Optimization: A Realized Single Factor Model , 2009 .

[9]  Wolfgang Härdle,et al.  Oracally Efficient Two-Step Estimation of Generalized Additive Model , 2011 .

[10]  Valeri Voev,et al.  Forecasting Covariance Matrices: A Mixed Frequency Approach , 2012 .

[11]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[12]  Wolfgang K. Härdle,et al.  Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011, J. Multivar. Anal..

[13]  C. Scarpa,et al.  The regulation of interdependent markets , 2011 .

[14]  Markus Reiß,et al.  Estimation of the characteristics of a Lévy process observed at arbitrary frequency , 2010 .

[15]  Kevin Sheppard,et al.  Evaluating Volatility and Correlation Forecasts , 2009 .

[16]  Yuichi Mori,et al.  How Computational Statistics Became the Backbone of Modern Data Science , 2011 .

[17]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[18]  Alexander Meyer-Gohde Sticky Information and Determinacy , 2011 .

[19]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[20]  M. Gilli,et al.  Bargaining and Collusion in a Regulatory Model , 2011 .

[21]  News-driven Business Cycles in SVARs , 2011 .

[22]  Ru Xie Human Capital Formation on Skill-Specific Labor Markets , 2011 .

[23]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[24]  A. Werwatz,et al.  An Indicator for National Systems of Innovation: Methodology and Application to 17 Industrialized Countries , 2011 .

[25]  W. Härdle,et al.  A Confidence Corridor for Expectile Functions , 2011 .

[26]  Santiago Moreno-Bromberg,et al.  Pollution Permits, Strategic Trading and Dynamic Technology Adoption , 2011 .

[27]  U. Bindseil The economics of TARGET2 balances , 2011 .

[28]  N. Hautsch,et al.  Predicting Bid-Ask Spreads Using Long Memory Autoregressive Conditional Poisson Models , 2011 .

[29]  Juliane Scheffel Identifying the Effect of Temporal Work Flexibility on Parental Time with Children , 2011 .

[30]  Gregory H. Bauer,et al.  Forecasting multivariate realized stock market volatility , 2011 .

[31]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[32]  Mean Volatility Regressions , 2011 .

[33]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[34]  U. Bindseil,et al.  The Basel III framework for liquidity standards and monetary policy , 2011 .

[35]  Eichler Michael,et al.  Fitting dynamic factor models to non-stationary time series , 2009 .

[36]  Soyoung Q. Park,et al.  Neurobiology of Value Integration: When Value Impacts Valuation , 2011, The Journal of Neuroscience.

[37]  Sören Preibusch,et al.  Unwillingness to Pay for Privacy: A Field Experiment , 2011, SSRN Electronic Journal.

[38]  Hauke R. Heekeren,et al.  The Neural Basis of Following Advice , 2011, PLoS biology.

[39]  Qianqiu Liu,et al.  On Portfolio Optimization: How and When Do We Benefit from High-Frequency Data? , 2009 .

[40]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[41]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[42]  Dick van Dijk,et al.  Realized Factor Models for Vast Dimensional Covariance Estimation , 2009 .

[43]  Marine Carrasco,et al.  Optimal Portfolio Selection using Regularization , 2010 .

[44]  Wolfgang Härdle,et al.  Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity , 2011 .

[45]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[46]  Wolfgang Karl Härdle,et al.  Bayesian Networks and Sex-Related Homicides , 2011 .

[47]  Kartik Anand,et al.  A Network Model of Financial System Resilience , 2011 .

[48]  Dieter Nautz,et al.  Short‐Term Herding of Institutional Traders: New Evidence from the German Stock Market , 2013 .

[49]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[50]  Stéphan Clémençon,et al.  Statistical analysis of financial time series under the assumption of local stationarity , 2004 .

[51]  G. Zumbach Empirical properties of large covariance matrices , 2009, 0903.1525.

[52]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[53]  Asymptotics of Asynchronicity , 2011, 1106.4222.

[54]  Nikolaus Hautsch,et al.  A Blocking and Regularization Approach to High Dimensional Realized Covariance Estimation , 2010 .

[55]  Jianqing Fan,et al.  Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios , 2008, 0812.2604.

[56]  Peter Kratz,et al.  Optimal liquidation in dark pools , 2013 .

[57]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[58]  Juliane Scheffel Compensation of Unusual Working Schedules , 2011 .

[59]  M. Burda,et al.  What Explains the German Labor Market Miracle in the Great Recession? , 2011, SSRN Electronic Journal.

[60]  U. Horst,et al.  Optimal Display of Iceberg Orders , 2011 .

[61]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[62]  David I. Harvey The evaluation of economic forecasts , 1997 .

[63]  Tim Bollerslev,et al.  Risk, Jumps, and Diversification , 2007 .

[64]  Alexander Meyer-Gohde Monetary Policy, Determinacy, and the Natural Rate Hypothesis , 2011 .

[65]  P. Hansen,et al.  Realized GARCH: A Joint Model of Returns and Realized Measures of Volatility , 2010 .

[66]  Marc Hallin,et al.  The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting , 2003 .

[67]  Gilles O. Zumbach,et al.  The Riskmetrics 2006 Methodology , 2007 .

[68]  Xiaolian Liu,et al.  Can crop yield risk be globally diversified , 2011 .

[69]  Dick J. C. van Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? , 2005 .

[70]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[71]  Markus Bibinger,et al.  An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory , 2011 .

[72]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[73]  Inference on Multivariate ARCH Processes with Large Sizes , 2009, 0903.1531.

[74]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[75]  Anthony R'eveillac,et al.  CRRA utility maximization under risk constraints , 2011, 1106.1702.

[76]  Dieter Nautz,et al.  The Information Content of Central Bank Interest Rate Projections: Evidence from New Zealand , 2012 .

[77]  R. Oomen High-dimensional covariance forecasting for short intra-day horizons , 2009 .

[78]  U. Horst,et al.  When to Cross the Spread: Curve Following with Singular Control , 2011 .

[79]  Fang Yao Monetary Policy, Trend Inflation and Inflation Persistence , 2011 .

[80]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[81]  Salmai Qari,et al.  The Law of Attraction Bilateral Search and Horizontal Heterogeneity , 2011 .

[82]  Dietmar Fehr,et al.  Exclusion in the All-Pay Auction: An Experimental Investigation , 2010 .

[83]  Peter Reinhard Hansen,et al.  REALIZED BETA GARCH: A MULTIVARIATE GARCH MODEL WITH REALIZED MEASURES OF VOLATILITY , 2012 .

[84]  Russ Moro,et al.  Forecasting Corporate Distress in the Asian and Pacific Region , 2011 .

[85]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[86]  W. Härdle,et al.  Localising Temperature Risk , 2010 .

[87]  P. Hansen,et al.  ESTIMATING THE PERSISTENCE AND THE AUTOCORRELATION FUNCTION OF A TIME SERIES THAT IS MEASURED WITH ERROR , 2010, Econometric Theory.

[88]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[89]  F. Diebold,et al.  Realized Beta: Persistence and Predictability , 2004 .

[90]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[91]  J. Diels,et al.  The impact of context and promotion on consumer responses and preferences in out-of-stock situations , 2011 .

[92]  R. Engle Dynamic Conditional Correlation , 2002 .

[93]  Sigbert Klinke Developing web-based tools for the teaching of statistics: Our Wikis and the German Wikipedia , 2011 .

[94]  Lydia Mechtenberg,et al.  A Strategic Mediator Who is Biased into the Same Direction as the Expert Can Improve Information Transmission , 2010 .

[95]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[96]  Y. Rozenholc,et al.  Pointwise adaptive estimation for quantile regression , 2011 .

[97]  W. Härdle,et al.  A Confidence Corridor for Sparse Longitudinal Data Curves , 2011 .

[98]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[99]  Tim Bollerslev,et al.  Measuring and modeling systematic risk in factor pricing models using high-frequency data , 2003 .

[100]  Juliane Scheffel How Do Unusual Working Schedules Affect Social Life? , 2011 .

[101]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[102]  Robert F. Engle,et al.  Fitting and Testing Vast Dimensional Time-Varying Covariance Models , 2007 .