Biased reduction method by combining improved modified pole clustering and improved Pade approximations
暂无分享,去创建一个
[1] R. Prasad,et al. Time domain model order reduction using Hankel matrix approach , 2014, Journal of the Franklin Institute.
[2] C. B. Vishwakarma,et al. MIMO System Using Eigen Algorithm and Improved Pade Approximations , 2014 .
[3] Kalyan Chatterjee,et al. System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations , 2014 .
[4] D. Chandra,et al. Suboptimal Control Using Model Order Reduction , 2014 .
[5] C. Vishwakarma. Order Reduction using Modified Pole Clustering and Pade Approximations , 2011 .
[6] G. Parmar,et al. System reduction using factor division algorithm and eigen spectrum analysis , 2007 .
[7] R. C. Mittal,et al. Model order reduction using response-matching technique , 2005, J. Frankl. Inst..
[8] D. Chandra,et al. Improved Routh-Pade/spl acute/ approximants: a computer-aided approach , 2004, IEEE Transactions on Automatic Control.
[9] R. Prasad. Pade type model order reduction for multivariable systems using routh approximation , 2000 .
[10] G. Sastry,et al. Large scale interval system modelling using Routh approximants , 2000 .
[11] T. N. Lucas,et al. Least-squares moment matching reduction methods , 1995 .
[12] Jayanta Pal,et al. Simulation based reduced order modeling using a clustering technique , 1990 .
[13] J. Pal. Improved Padé approximants using stability equation method , 1983 .
[14] Y. Shamash. Linear system reduction using Pade approximation to allow retention of dominant modes , 1975 .
[15] R. Prasad,et al. MIMO system reduction using modified pole clustering and genetic algorithm , 2009 .
[16] H. Padé. Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .