Biased reduction method by combining improved modified pole clustering and improved Pade approximations

[1]  R. Prasad,et al.  Time domain model order reduction using Hankel matrix approach , 2014, Journal of the Franklin Institute.

[2]  C. B. Vishwakarma,et al.  MIMO System Using Eigen Algorithm and Improved Pade Approximations , 2014 .

[3]  Kalyan Chatterjee,et al.  System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations , 2014 .

[4]  D. Chandra,et al.  Suboptimal Control Using Model Order Reduction , 2014 .

[5]  C. Vishwakarma Order Reduction using Modified Pole Clustering and Pade Approximations , 2011 .

[6]  G. Parmar,et al.  System reduction using factor division algorithm and eigen spectrum analysis , 2007 .

[7]  R. C. Mittal,et al.  Model order reduction using response-matching technique , 2005, J. Frankl. Inst..

[8]  D. Chandra,et al.  Improved Routh-Pade/spl acute/ approximants: a computer-aided approach , 2004, IEEE Transactions on Automatic Control.

[9]  R. Prasad Pade type model order reduction for multivariable systems using routh approximation , 2000 .

[10]  G. Sastry,et al.  Large scale interval system modelling using Routh approximants , 2000 .

[11]  T. N. Lucas,et al.  Least-squares moment matching reduction methods , 1995 .

[12]  Jayanta Pal,et al.  Simulation based reduced order modeling using a clustering technique , 1990 .

[13]  J. Pal Improved Padé approximants using stability equation method , 1983 .

[14]  Y. Shamash Linear system reduction using Pade approximation to allow retention of dominant modes , 1975 .

[15]  R. Prasad,et al.  MIMO system reduction using modified pole clustering and genetic algorithm , 2009 .

[16]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .