Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log‐Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non‐Gaussian response variables. The posterior marginals are not available in closed form owing to the non‐Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.

[1]  McCollom Jh,et al.  The Discussion , 1897 .

[2]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[3]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[4]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[5]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[6]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[7]  George E. P. Box,et al.  Sampling and Bayes' inference in scientific modelling and robustness , 1980 .

[8]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[9]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[10]  C. Ansley,et al.  The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .

[11]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[12]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[13]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[14]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[15]  A. F. M. Smith,et al.  Progress with numerical and graphical methods for practical Bayesian statistics , 1987 .

[16]  R. Kohn,et al.  A new algorithm for spline smoothing based on smoothing a stochastic process , 1987 .

[17]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[19]  J. Besag A candidate's formula: A curious result in Bayesian prediction , 1989 .

[20]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[21]  L. Tierney,et al.  Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .

[22]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[23]  P. Thall,et al.  Some covariance models for longitudinal count data with overdispersion. , 1990, Biometrics.

[24]  L. Pettit The Conditional Predictive Ordinate for the Normal Distribution , 1990 .

[25]  L. Tierney,et al.  The validity of posterior expansions based on Laplace''s method , 1990 .

[26]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[27]  L. Fahrmeir Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .

[28]  R. Kass,et al.  Approximate Bayes Factors and Orthogonal Parameters, with Application to Testing Equality of Two Binomial Proportions , 1992 .

[29]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[30]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[31]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[32]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[33]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[34]  Christian P. Robert,et al.  L'analyse statistique bayésienne , 1993 .

[35]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[36]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[37]  N. Shephard Partial non-Gaussian state space , 1994 .

[38]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[39]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[40]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[41]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[42]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[43]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[44]  Peter McCullagh,et al.  Laplace Approximation of High Dimensional Integrals , 1995 .

[45]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[46]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[47]  F. Y. Edgeworth,et al.  The theory of statistics , 1996 .

[48]  Alan E. Gelfand,et al.  Model Determination using sampling-based methods , 1996 .

[49]  Harvey Goldstein,et al.  League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance , 1996 .

[50]  N. Shephard,et al.  Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns , 1996 .

[51]  Ludwig Fahrmeir,et al.  Bayesian spline-type smoothing in generalized regression models , 1996 .

[52]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[53]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[54]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[55]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[56]  Dani Gamerman,et al.  Sampling from the posterior distribution in generalized linear mixed models , 1997, Stat. Comput..

[57]  R. Tweedie,et al.  Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .

[58]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[59]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[60]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[61]  F P Wheeler,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1998, J. Oper. Res. Soc..

[62]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[63]  L Knorr-Held,et al.  Modelling risk from a disease in time and space. , 1998, Statistics in medicine.

[64]  Siem Jan Koopman,et al.  Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives , 1999 .

[65]  J. Hodges Some algebra and geometry for hierarchical models, applied to diagnostics , 1998 .

[66]  D. Gamerman Markov chain Monte Carlo for dynamic generalised linear models , 1998 .

[67]  T. C. Haas,et al.  Model-based geostatistics - Discussion , 1998 .

[68]  Michael I. Jordan Graphical Models , 2003 .

[69]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  L. Knorr‐Held Conditional Prior Proposals in Dynamic Models , 1999 .

[71]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[72]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[73]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[74]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[75]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[76]  B. Mallick,et al.  Generalized Linear Models : A Bayesian Perspective , 2000 .

[77]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[78]  L Knorr-Held,et al.  Bayesian modelling of inseparable space-time variation in disease risk. , 2000, Statistics in medicine.

[79]  D. Titterington,et al.  Approximate Bayesian inference for simple mixtures , 2000 .

[80]  Anthony N. Pettitt,et al.  Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data , 2000 .

[81]  Håvard Rue,et al.  On block updating in Markov random field models for disease mapping. (REVISED, May 2001) , 2000 .

[82]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[83]  Ole Winther,et al.  Gaussian Processes for Classification: Mean-Field Algorithms , 2000, Neural Computation.

[84]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[85]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[86]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[87]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[88]  Mariano Rivera,et al.  Gauss-Markov Measure Field Models for Low-Level Vision , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[90]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[91]  J. Nelder,et al.  Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions , 2001 .

[92]  J. Wakefield,et al.  Bayesian approaches to disease mapping , 2001 .

[93]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[94]  Anders Brix,et al.  Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds , 2001 .

[95]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[96]  Youngjo Lee,et al.  Modelling and analysing correlated non-normal data , 2001 .

[97]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[98]  Peter Congdon Bayesian statistical modelling , 2002 .

[99]  H. Rue,et al.  On Block Updating in Markov Random Field Models for Disease Mapping , 2002 .

[100]  Francesco Bartolucci,et al.  A recursive algorithm for Markov random fields , 2002 .

[101]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[102]  Anthony N. Pettitt,et al.  A Conditional Autoregressive Gaussian Process for Irregularly Spaced Multivariate Data with Application to Modelling Large Sets of Binary Data , 2002, Stat. Comput..

[103]  Ludwig Fahrmeir,et al.  Function estimation with locally adaptive dynamic models , 2002, Comput. Stat..

[104]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[105]  Leonhard Knorr-Held,et al.  Disease Mapping of Stage‐Specific Cancer Incidence Data , 2002, Biometrics.

[106]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[107]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[108]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[109]  Josiane Zerubia,et al.  A Gauss-Markov model for hyperspectral texture analysis of urban areas , 2002, Object recognition supported by user interaction for service robots.

[110]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[111]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[112]  Chris A. Glasbey,et al.  A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation , 2003 .

[113]  Leonhard Knorr-Held,et al.  Non‐Parametric Ecological Regression and Spatial Variation , 2003 .

[114]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[115]  M. Wand,et al.  Geoadditive models , 2003 .

[116]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[117]  David Ruppert,et al.  Semiparametric Regression: Author Index , 2003 .

[118]  J. Hodges,et al.  Posterior bimodality in the balanced one‐way random‐effects model , 2003 .

[119]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[120]  H. Rue,et al.  Norges Teknisk-naturvitenskapelige Universitet Approximating Hidden Gaussian Markov Random Fields Approximating Hidden Gaussian Markov Random Fields , 2003 .

[121]  Carlo Gaetan,et al.  Smoothing Sample Extremes with Dynamic Models , 2004 .

[122]  Chuhsing Kate Hsiao,et al.  Bayesian marginal inference via candidate's formula , 2004, Stat. Comput..

[123]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[124]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[125]  P. Besbeas,et al.  A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts , 2004 .

[126]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[127]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[128]  D. M. Titterington,et al.  Bayesian Methods for Neural Networks and Related Models , 2004 .

[129]  Leonhard Held,et al.  Simultaneous Posterior Probability Statements From Monte Carlo Output , 2004 .

[130]  Anthony N. Pettitt,et al.  Efficient recursions for general factorisable models , 2004 .

[131]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[132]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[133]  Göran Kauermann,et al.  Penalized spline smoothing in multivariable survival models with varying coefficients , 2005, Comput. Stat. Data Anal..

[134]  J. Rosenthal,et al.  Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .

[135]  M. Held Towards Joint Disease , 2005 .

[136]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[137]  Adrian Bowman,et al.  Generalized additive models for location, scale and shape - Discussion , 2005 .

[138]  Tom Heskes,et al.  Gaussian Quadrature Based Expectation Propagation , 2005, AISTATS.

[139]  H. Rue,et al.  On the Second‐Order Random Walk Model for Irregular Locations , 2008 .

[140]  Veerabhadran Baladandayuthapani,et al.  Spatially Adaptive Bayesian Penalized Regression Splines (P-splines) , 2005 .

[141]  L. Held,et al.  Towards joint disease mapping , 2005, Statistical methods in medical research.

[142]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[143]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[144]  Carl E. Rasmussen,et al.  Assessing Approximate Inference for Binary Gaussian Process Classification , 2005, J. Mach. Learn. Res..

[145]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..

[146]  Youngjo Lee,et al.  Robust ascertainment‐adjusted parameter estimation , 2005, Genetic epidemiology.

[147]  Susan M. Sanchez,et al.  Very large fractional factorial and central composite designs , 2005, TOMC.

[148]  Bo Wang,et al.  Inadequacy of interval estimates corresponding to variational Bayesian approximations , 2005, AISTATS.

[149]  I. Steinsland,et al.  Making Inference from Bayesian Animal Models utilising Gaussian Markov Random Field properties , 2005 .

[150]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[151]  S. Frühwirth-Schnatter,et al.  Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling , 2006 .

[152]  Fred Godtliebsen,et al.  Bayesian multiscale analysis for time series data , 2006, Comput. Stat. Data Anal..

[153]  Robust estimation in mixed linear models with non‐monotone missingness , 2006, Statistics in medicine.

[154]  P. Erästö Studies in Trend Detection of Scatter Plots with Visualization , 2006 .

[155]  Charmaine B. Dean,et al.  Approximate inference for disease mapping , 2006, Comput. Stat. Data Anal..

[156]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[157]  Mark W. Woolrich,et al.  Variational bayes inference of spatial mixture models for segmentation , 2006, IEEE Transactions on Medical Imaging.

[158]  J. Nelder,et al.  Double hierarchical generalized linear models , 2006 .

[159]  Simon P. Wilson,et al.  Bayesian palaeoclimate reconstruction , 2006 .

[160]  J. Nelder,et al.  Double hierarchical generalized linear models (with discussion) , 2006 .

[161]  Hans J. Skaug,et al.  Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models , 2006, Comput. Stat. Data Anal..

[162]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[163]  James Stephen Marron,et al.  Advanced Distribution Theory for SiZer , 2006 .

[164]  D. Titterington,et al.  Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model , 2006 .

[165]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[166]  C. Czado,et al.  Modelling count data with overdispersion and spatial effects , 2008 .

[167]  L. Fahrmeir,et al.  Structured Additive Regression for Categorical Space–Time Data: A Mixed Model Approach , 2006 .

[168]  Gareth O. Roberts,et al.  Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .

[169]  A. Gelman Iterative and Non-iterative Simulation Algorithms , 2006 .

[170]  R. Waagepetersen An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes , 2007, Biometrics.

[171]  A. Gelfand,et al.  High-Resolution Space–Time Ozone Modeling for Assessing Trends , 2007, Journal of the American Statistical Association.

[172]  Sylvia Frühwirth-Schnatter,et al.  Auxiliary mixture sampling with applications to logistic models , 2007, Comput. Stat. Data Anal..

[173]  Jon Wakefield,et al.  Disease mapping and spatial regression with count data. , 2007, Biostatistics.

[174]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[175]  L. Fahrmeir,et al.  A Mixed Model Approach for Geoadditive Hazard Regression , 2007 .

[176]  Gareth O. Roberts,et al.  A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.

[177]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[178]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[179]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[180]  D. Ruppert,et al.  Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors , 2007 .

[181]  B. Carlin,et al.  Spatial Analyses of Periodontal Data Using Conditionally Autoregressive Priors Having Two Classes of Neighbor Relations , 2007 .

[182]  Finn Lindgren,et al.  Explicit construction of GMRF approximations to generalised Matérn fields on irregular grids , 2007 .

[183]  S. Bhattacharya,et al.  Importance re-sampling {MCMC} for cross-validation in inverse problems , 2007 .

[184]  H. Rue,et al.  Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .

[185]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[186]  Maengseok Noh,et al.  REML estimation for binary data in GLMMs , 2007 .

[187]  L. Fahrmeir,et al.  Adaptive Gaussian Markov random fields with applications in human brain mapping , 2007 .

[188]  Spatial Versus Spatiotemporal Disease Mapping , 2007 .

[189]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[190]  M. Fuentes Approximate Likelihood for Large Irregularly Spaced Spatial Data , 2007, Journal of the American Statistical Association.

[191]  Maengseok Noh,et al.  Robust Modeling for Inference From Generalized Linear Model Classes , 2007 .

[192]  S. Koopman,et al.  Monte Carlo estimation for nonlinear non-Gaussian state space models , 2007 .

[193]  Isham,et al.  Statistical Methods for Spatio-Temporal Systems. Boca Raton , 2007 .

[194]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[195]  William J. Browne,et al.  A comparison of the hierarchical likelihood and Bayesian approaches to spatial epidemiological modelling , 2007 .

[196]  Håvard Rue,et al.  Recursive computing and simulation-free inference for general factorizable models , 2007 .

[197]  W. McCausland The Hessian Method (Highly Efficient State Smoothing, In a Nutshell) , 2008 .

[198]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[199]  David J. Nott,et al.  Approximating the marginal likelihood using copula , 2008, 0810.5474.

[200]  C. Crainiceanu,et al.  Fast Adaptive Penalized Splines , 2008 .

[201]  Nicholas G. Polson,et al.  Practical filtering with sequential parameter learning , 2008 .

[202]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[203]  Ole Winther,et al.  Improving on Expectation Propagation , 2008, NIPS.

[204]  L. Held,et al.  Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds , 2008 .

[205]  H. Rue,et al.  Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models , 2008 .

[206]  Variational approximations for logistic mixed models , 2008 .

[207]  Gareth O. Roberts,et al.  Variance bounding Markov chains. , 2008, 0806.2747.

[208]  Youngjo Lee,et al.  GLM-methods for volatility models , 2008 .

[209]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[210]  Anthony N. Pettitt,et al.  Variational Bayes for estimating the parameters of a hidden Potts model , 2009, Stat. Comput..

[211]  Claudia Czado,et al.  Predictive Model Assessment for Count Data , 2009, Biometrics.

[212]  Radford M. Neal Regression and Classification Using Gaussian Process Priors , 2009 .

[213]  Discussion on the paper by Rue, Martino and Chopin: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[214]  Ludwig Fahrmeir,et al.  Propriety of posteriors in structured additive regression models: Theory and empirical evidence , 2009 .

[215]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[216]  Michael Salter-Townshend,et al.  Fast approximate inverse Bayesian inference in non-parametric multivariate regression with application to palaeoclimate reconstruction , 2009 .

[217]  Tom Heskes,et al.  Discussion of ``Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations'' by H. Rue, S. Martino and N. Chopin , 2009 .

[218]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[219]  Håvard Rue,et al.  Bayesian multiscale feature detection of log-spectral densities , 2009, Comput. Stat. Data Anal..

[220]  A. R. Tremayne,et al.  Exploratory data analysis and model criticism with posterior plots , 2010, Comput. Stat. Data Anal..

[221]  Daniel Gianola,et al.  "Likelihood, Bayesian, and Mcmc Methods in Quantitative Genetics" , 2010 .

[222]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .