Numerical analysis of the aero-optic effects induced by the turbulence field surrounding hypersonic aircrafts

The goal of this paper is to numerically simulate and analyze the aero-optic effects caused by the hyper-speed turbulence fields surrounding the aircraft under different flight conditions, and to characterize them with the associated optical transfer functions. First, analysis and computation of the aero-optic effects under different flight conditions have been addressed, where the parameters characterizing the hyper-speed turbulence field were obtained by solving its N-S equations via CFD methods. The infrared ray trajectories passing through the flow field with a non-homogeneous distribution of the refraction indices were acquired using the gradient index ray-tracing method, and the transfer function to represent the aero-optic effects was derived considering the principles of Fourier optics. The simulation results showed that the aero-optic transfer function is characterized as a low-pass filter of nonlinearly varying phases, which results the blurring and shifting of the objects in the acquired images.