The features of development of osteoporosis in senescence-accelerated OXYS rats

[1]  N. Kolosova,et al.  Bone matrix glycosaminoglycans and osteoporosis development in early aging OXYS rats , 2011, Advances in gerontology = Uspekhi gerontologii.

[2]  E. Krenning,et al.  Peak bone mineral density, lean body mass and fractures. , 2010, Bone.

[3]  N. Kolosova,et al.  Cathepsin K and matrix metalloprotease activities in bone tissue of the OXYS rats during the development of osteoporosis , 2009 .

[4]  P. Hinton,et al.  Serum markers of bone turnover are increased by modest weight loss with or without weight-bearing exercise in overweight premenopausal women. , 2009, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.

[5]  M. Rybchyn,et al.  Osteoblasts play key roles in the mechanisms of action of strontium ranelate , 2009, British journal of pharmacology.

[6]  P. Halbout,et al.  Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response , 2009, Osteoporosis International.

[7]  Peter Pietschmann,et al.  Osteoporosis: An Age-Related and Gender-Specific Disease – A Mini-Review , 2008, Gerontology.

[8]  D. Eyre,et al.  Using biochemical markers of bone turnover in clinical practice. , 2008, Cleveland Clinic journal of medicine.

[9]  B. Troen,et al.  Understanding the Mechanisms of Senile Osteoporosis: New Facts for a Major Geriatric Syndrome , 2008, Journal of the American Geriatrics Society.

[10]  R. González-González,et al.  Characterization of a new experimental model of osteoporosis in rabbits , 2008, Journal of Bone and Mineral Metabolism.

[11]  R. Talmage,et al.  Calcium homeostasis: how bone solubility relates to all aspects of bone physiology. , 2007, Journal of musculoskeletal & neuronal interactions.

[12]  Robert J.P. Williams,et al.  The evolution of calcium biochemistry. , 2006, Biochimica et biophysica acta.

[13]  J. Iwamoto,et al.  Longitudinal Study of Bone and Calcium Metabolism and Fracture Incidence in Spinocerebellar Degeneration , 2006, European Neurology.

[14]  M. Sadovoy,et al.  STRUCTURAL AND FUNCTIONAL CHANGES IN BONE TISSUE OF THE SPINE AND EXTREMITIES IN OXYS RATS , 2006 .

[15]  O. Shuvaeva,et al.  The estimation of the possibilities of synchrotron radiation X-ray fluorescent analysis and atomic specrometry for the bone's elemental composition determination , 2005 .

[16]  O. Johnell,et al.  Epidemiology of osteoporotic fractures , 2005, Osteoporosis International.

[17]  G. Saggese,et al.  Critical Ages and Stages of Puberty in the Accumulation of Spinal and Femoral Bone Mass: The Validity of Bone Mass Measurements , 2004, Hormone Research in Paediatrics.

[18]  S. P. Nielsen The biological role of strontium , 2004 .

[19]  S. Fukuda,et al.  Age-related changes in bone mineral density, cross-sectional area and the strength of long bones in the hind limbs and first lumbar vertebra in female Wistar rats. , 2004, The Journal of veterinary medical science.

[20]  R. Lorenc Idiopathic Juvenile Osteoporosis , 2002, Calcified Tissue International.

[21]  G. Saggese,et al.  Puberty and bone development. , 2002, Best practice & research. Clinical endocrinology & metabolism.

[22]  R. Eastell,et al.  Measurement of Osteocalcin , 2000, Annals of clinical biochemistry.

[23]  J. C. Netelenbos,et al.  Strontium as a marker for intestinal calcium absorption: the stimulatory effect of calcitriol. , 2000, Clinical chemistry.

[24]  John A. Kanis,et al.  Bone and Mineral Research , 1991 .

[25]  D. Dempster,et al.  Anatomy and functions of the adult skeleton , 2006 .

[26]  Patricia A Downey,et al.  Bone biology and the clinical implications for osteoporosis. , 2006, Physical therapy.