Collisionless energy-independent kinetic equilibria in axisymmetric magnetized plasmas.

The proof of existence of Vlasov-Maxwell equilibria which do not exhibit a functional dependence in terms of the single-particle energy is established. The theory deals with the kinetic treatment of multispecies axisymmetric magnetized plasmas, with particular reference to plasma systems which are slowly time varying. Aside from collisionless laboratory plasmas, the theory concerns important aspects of astrophysical scenarios, such as accretion-disk and coronal plasmas arising in the gravitational field of compact objects. Qualitative properties of the solution are investigated by making use of a perturbative kinetic theory. These concern the realization of the equilibrium kinetic distribution functions in terms of generalized Gaussian distributions and the constraints imposed by the Maxwell equations. These equilibria are shown to be generally non-neutral and characterized by the absence of the Debye screening effect. As a further application, the stability properties of these equilibria with respect to axisymmetric electromagnetic perturbations are addressed. This permits us to establish absolute stability criteria holding in such a case.

[1]  C. Cremaschini,et al.  Symmetry Properties of the Exact EM Radiation-Reaction Equation for Classical Extended Particles and Antiparticles , 2013 .

[2]  B. Ahmedov,et al.  Dynamics of an electric current-carrying string loop near a Schwarzschild black hole embedded in an external magnetic field , 2013 .

[3]  Z. Stuchlík,et al.  Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena , 2013 .

[4]  Z. Stuchlík,et al.  Magnetic loop generation by collisionless gravitationally bound plasmas in axisymmetric tori. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  C. Cremaschini,et al.  Statistical treatment of the electromagnetic radiation-reaction problem: Evaluation of the relativistic Boltzmann-Shannon entropy , 2013 .

[6]  C. Cremaschini,et al.  Theory of spatially non-symmetric kinetic equilibria for collisionless plasmas , 2013, 2307.00090.

[7]  Z. Stuchl'ik,et al.  String loops in the field of braneworld spherically symmetric black holes and naked singularities , 2012, 1309.6879.

[8]  C. Cremaschini,et al.  Collisionless kinetic regimes for quasi-stationary axisymmetric accretion disc plasmas , 2012, 2306.15949.

[9]  J. Miller,et al.  Absolute stability of axisymmetric perturbations in strongly magnetized collisionless axisymmetric accretion disk plasmas. , 2012, Physical review letters.

[10]  C. Cremaschini,et al.  Kinetic description of rotating Tokamak plasmas with anisotropic temperatures in the collisionless regime , 2011, 1110.4709.

[11]  J. Miller,et al.  Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations , 2011, 1102.0179.

[12]  V. Karas,et al.  TRANSITION FROM REGULAR TO CHAOTIC CIRCULATION IN MAGNETIZED CORONAE NEAR COMPACT OBJECTS , 2010, 1008.4650.

[13]  Informatics,et al.  Kinetic axisymmetric gravitational equilibria in collisionless accretion disk plasmas , 2010, 1001.3089.

[14]  D. Uzdensky,et al.  Reconnection in Marginally Collisionless Accretion Disk Coronae , 2008, 0804.4481.

[15]  Z. Stuchlík,et al.  Pseudo-Newtonian gravitational potential for Schwarzschild-de Sitter spacetimes , 2008, 0803.3641.

[16]  D. Uzdensky,et al.  Statistical Description of a Magnetized Corona above a Turbulent Accretion Disk , 2008, 0803.0337.

[17]  State University Rio de Janeiro,et al.  X-ray emissions from two-temperature accretion flows within a dipole magnetic funnel , 2007, 0705.1331.

[18]  M. Salimullah,et al.  Plasma-sheath effects on the Debye screening problem , 2005, physics/0512213.

[19]  M. Tessarotto,et al.  Covariant gyrokinetic description of relativistic plasmas , 2004 .

[20]  M. Tessarotto,et al.  Covariant descriptions of the relativistic guiding-center dynamics , 1999 .

[21]  J. Johnson,et al.  On the existence of weakly non-axisymmetric scalar-pressure magnetostatic equilibria , 1996 .

[22]  John L. Johnson,et al.  Hamiltonian approach to the magnetostatic equilibrium problem , 1995 .

[23]  Alain J. Brizard,et al.  Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .

[24]  I. Bernstein,et al.  Ion transport in toroidally rotating tokamak plasmas , 1987 .

[25]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[26]  Bohdan Paczynski,et al.  Thick accretion disks and supercritical luminosities. , 1979 .

[27]  S. Rosseland Electrical State of a Star , 1924 .