TMT-based proteomics profile reveals changes of the entorhinal cortex in a kainic acid model of epilepsy in mice

[1]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[2]  A. Sickmann,et al.  Tandem Mass Tags for Comparative and Discovery Proteomics. , 2021, Methods in molecular biology.

[3]  B. Bernhardt,et al.  Connectome biomarkers of drug‐resistant epilepsy , 2020, Epilepsia.

[4]  E. Buffalo,et al.  Anatomy and Function of the Primate Entorhinal Cortex. , 2020, Annual review of vision science.

[5]  J. McNamara,et al.  TrkB-Shc Signaling Protects against Hippocampal Injury Following Status Epilepticus , 2019, The Journal of Neuroscience.

[6]  E. Verdaguer,et al.  JNK1 inhibition by Licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid , 2017, Neuropharmacology.

[7]  Ruth C Lovering,et al.  Exploring autophagy with Gene Ontology , 2016, Autophagy.

[8]  B. Krammer,et al.  NTRK2 (TrkB gene) variants and temporal lobe epilepsy: A genetic association study , 2017, Epilepsy Research.

[9]  Joshua E. Elias,et al.  Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry. , 2017, Methods in molecular biology.

[10]  Peng Xie,et al.  Quantitative proteomics analysis of the liver reveals immune regulation and lipid metabolism dysregulation in a mouse model of depression , 2016, Behavioural Brain Research.

[11]  M. Méndez-Armenta,et al.  Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy , 2014, Oxidative medicine and cellular longevity.

[12]  G. Sills,et al.  Advantages of Repeated Low Dose against Single High Dose of Kainate in C57BL/6J Mouse Model of Status Epilepticus: Behavioral and Electroencephalographic Studies , 2014, PloS one.

[13]  S. Legartová,et al.  Epigenetic aspects of HP1 exchange kinetics in apoptotic chromatin. , 2013, Biochimie.

[14]  R. Libby,et al.  BCL2L1 (BCL-X) promotes survival of adult and developing retinal ganglion cells , 2012, Molecular and Cellular Neuroscience.

[15]  B. Jeon,et al.  Clusterin interaction with Bcl-xL is associated with seizure-induced neuronal death , 2012, Epilepsy Research.

[16]  E. Bertram,et al.  Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons , 2011, Neurobiology of Disease.

[17]  B. Jeon,et al.  Protein kinase Cdelta is associated with 14-3-3 phosphorylation in seizure-induced neuronal death , 2010, Epilepsy Research.

[18]  D. Hochstrasser,et al.  From relative to absolute quantification of tryptic peptides with tandem mass tags: application to cerebrospinal fluid. , 2010, Chimia.

[19]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[20]  Edward H. Bertram,et al.  Temporal lobe epilepsy: Where do the seizures really begin? , 2009, Epilepsy & Behavior.

[21]  S. Elmore Apoptosis: A Review of Programmed Cell Death , 2007, Toxicologic pathology.

[22]  P. Buckmaster,et al.  Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[23]  R. Simon,et al.  Epilepsy and Apoptosis Pathways , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  N. Gavaldà,et al.  Brain‐derived neurotrophic factor prevents changes in Bcl‐2 family members and caspase‐3 activation induced by excitotoxicity in the striatum , 2005, Journal of neurochemistry.

[25]  P. Rakic,et al.  A critical role of neural-specific JNK3 for ischemic apoptosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Willis,et al.  The Bcl-2-regulated apoptotic pathway , 2003, Journal of Cell Science.

[27]  N. Belluardo,et al.  Increase in Bcl‐2 phosphorylation and reduced levels of BH3‐only Bcl‐2 family proteins in kainic acid‐mediated neuronal death in the rat brain , 2003, The European journal of neuroscience.

[28]  R. Clark,et al.  To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways , 2003, Progress in Neurobiology.

[29]  R. Schwarcz,et al.  Neurons in Layer III of the Entorhinal Cortex: A Role in Epileptogenesis and Epilepsy? , 2000, Annals of the New York Academy of Sciences.

[30]  Teiichi Furuichi,et al.  Inositol 1,4,5-Trisphosphate Receptor Type 1 Is a Substrate for Caspase-3 and Is Cleaved during Apoptosis in a Caspase-3-dependent Manner* , 1999, The Journal of Biological Chemistry.

[31]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode Caenorhabditis elegans. , 1999, Cancer research.

[32]  Y. Lazebnik,et al.  Caspases: enemies within. , 1998, Science.

[33]  F. Edward Dudek,et al.  Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy , 1998, Epilepsy Research.

[34]  R. Schwarcz,et al.  Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: a silver impregnation study , 1997, Neuroscience.

[35]  K. Mikoshiba The InsP3 receptor and intracellular Ca2+ signaling , 1997, Current Opinion in Neurobiology.

[36]  S. Powell,et al.  Distinct Neurodevelopmental Patterns of Bcl‐2 and Bcl‐x Expression Are Altered in Glioneuronal Hamartias of the Human Temporal Lobe , 1997, Journal of neuropathology and experimental neurology.

[37]  E. Cavalheiro,et al.  Developmental aspects of the pilocarpine model of epilepsy , 1996, Epilepsy Research.

[38]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  H. Horvitz,et al.  C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 , 1994, Cell.

[40]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[41]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[42]  M. Hengartner,et al.  Caenorhabditis elegans gene ced-9 protects cells from programmed cell death , 1992, Nature.

[43]  Z. Bortolotto,et al.  Long‐Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures , 1991, Epilepsia.

[44]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.