Locating an obnoxious plane

Abstract Let S be a set of n points in three-dimensional Euclidean space. We consider the problem of positioning a plane π intersecting the convex hull of S such that min{d(π, p); p ∈ S} is maximized. In a geometric setting, the problem asks for the widest empty slab through n points in space, where a slab is the open region of R 3 that is bounded by two parallel planes that intersect the convex hull of S. We give a characterization of the planes which are locally optimal and we show that the problem can be solved in O(n3) time and O(n2) space. We also consider several variants of the problem which include constraining the obnoxious plane to contain a given line or point and computing the widest empty slab for polyhedral obstacles. Finally, we show how to adapt our method for computing a largest empty annulus in the plane, improving the known time bound O(n3 log n) [J.M. Diaz-Banez, F. Hurtado, H. Meijer, D. Rappaport, T. Sellares, The largest empty annulus problem, International Journal of Computational Geometry and Applications 13 (4) (2003) 317–325].

[1]  Samiran Chattopadhyay,et al.  The K-dense corridor problems , 1990, Pattern Recognit. Lett..

[2]  Matthew J. Katz,et al.  Obnoxious facility location: Complete service with minimal harm , 2000, CCCG.

[3]  Godfried T. Toussaint,et al.  Computing largest empty circles with location constraints , 1983, International Journal of Computer & Information Sciences.

[4]  Michiel H. M. Smid,et al.  Computing a Largest Empty Anchored Cylinder, and Related Problems , 1995, FSTTCS.

[5]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[6]  Leonidas J. Guibas,et al.  Topological Sweeping in Three Dimensions , 1990, SIGAL International Symposium on Algorithms.

[7]  D. T. Lee,et al.  The Power of Geometric Duality Revisited , 1985, Inf. Process. Lett..

[8]  D. T. Lee,et al.  Geometric complexity of some location problems , 1986, Algorithmica.

[9]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[10]  Jack Brimberg,et al.  Linear Facility Location in Three Dimensions - Models and Solution Methods , 2002, Oper. Res..

[11]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[12]  Franco P. Preparata,et al.  Widest-Corridor Problems , 1994, Nord. J. Comput..

[13]  Micha Sharir,et al.  On the sum of squares of cell complexities in hyperplane arrangements , 1991, SCG '91.

[14]  José Miguel Díaz-Báñez,et al.  The Largest Empty Annulus Problem , 2002, Int. J. Comput. Geom. Appl..

[15]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[16]  José Miguel Díaz-Báñez,et al.  Continuous location of dimensional structures , 2004, Eur. J. Oper. Res..

[17]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ferran Hurtado,et al.  Red-Blue Separability Problems in 3D , 2003, ICCSA.

[19]  Siu-Wing Cheng,et al.  Widest Empty L-Shaped Corridor , 1996, Inf. Process. Lett..

[20]  Micha Sharir,et al.  Recent Developments in the Theory of Arrangements of Surfaces , 1999, FSTTCS.

[21]  Sung Yong Shin,et al.  The Widest k-Dense Corridor Problems , 1998, Inf. Process. Lett..

[22]  Michiel H. M. Smid,et al.  Computing a Largest Empty Anchored Cylinder, and Related Problems , 1997, Int. J. Comput. Geom. Appl..

[23]  José Miguel Díaz-Báñez,et al.  The Largest Empty Annulus Problem , 2003, Int. J. Comput. Geom. Appl..

[24]  N. Megiddo,et al.  Computing circular separability , 1986 .

[25]  Anita Schöbel,et al.  Locating least-distant lines in the plane , 1998, Eur. J. Oper. Res..