Multi-Timescale Observation of Ultrashort Pulse Laser Ablation of Copper

[1]  N. Sugita,et al.  Investigation of multi-timescale processing phenomena in femtosecond laser drilling of zirconia ceramics. , 2022, Optics express.

[2]  N. Sugita,et al.  Observation of damage generation induced by electron excitation and stress wave propagation during ultrashort pulse laser drilling of sapphire , 2022, Applied Physics A.

[3]  Huijie Sun,et al.  Temporal-spatial characteristics of filament induced by a femtosecond laser pulse in transparent dielectrics. , 2022, Optics express.

[4]  N. Sugita,et al.  Pulse duration dependence of dry laser peening effects in the femtosecond-to-picosecond regime , 2021, Applied Physics Express.

[5]  Michael Schmidt,et al.  Ultrashort single-pulse laser ablation of stainless steel, aluminium, copper and its dependence on the pulse duration. , 2021, Optics express.

[6]  N. Sugita,et al.  High-speed observation of pulse energy and pulse width dependences of damage generation in SiC during ultrashort pulse laser drilling , 2020, Applied Physics A.

[7]  Michael Schmidt,et al.  Ultrafast pump-probe ellipsometry and microscopy reveal the surface dynamics of femtosecond laser ablation of aluminium and stainless steel , 2020 .

[8]  F. Kannari,et al.  1000-fps consecutive ultrafast 2D-burst imaging with a sub-nanosecond temporal resolution by a frequency-time encoding of SF-STAMP , 2020 .

[9]  M. Tsukamoto,et al.  Oxygen concentration dependence of microstructure formed on Ni by backward pulsed laser deposition , 2020 .

[10]  N. Sugita,et al.  Dynamics of pressure waves during femtosecond laser processing of glass. , 2019, Optics express.

[11]  G. Römer,et al.  Investigation of the ultrashort pulsed laser processing of zinc at 515 nm: Morphology, crystallography and ablation threshold , 2019, Materials & Design.

[12]  N. Sugita,et al.  Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament , 2018 .

[13]  Mamoru Mitsuishi,et al.  Mechanisms of damage formation in glass in the process of femtosecond laser drilling , 2018 .

[14]  D. Grossmann,et al.  In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation , 2017 .

[15]  Ching-Yen Ho,et al.  Ablation Characteristics of Femtosecond Laser Processing for Nanometer-sized Ceramic Films , 2017 .

[16]  David Veysset,et al.  Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer , 2016, Scientific Reports.

[17]  Mamoru Mitsuishi,et al.  Experimental Analysis of Glass Drilling with Ultrashort Pulse Lasers , 2016, Int. J. Autom. Technol..

[18]  L. Rapp,et al.  High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams , 2016, Scientific Reports.

[19]  Ronald Holzwarth,et al.  Ablation-cooled material removal with ultrafast bursts of pulses , 2016, Nature.

[20]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[21]  Chung-Wei Cheng,et al.  Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison , 2016 .

[22]  K. Miura,et al.  Fast and slow dynamics in femtosecond laser-induced crack propagation inside a LiF single crystal , 2015 .

[23]  E. Ling,et al.  Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper , 2015 .

[24]  H. Exner,et al.  High-pulse repetition frequency ultrashort pulse laser processing of copper , 2015 .

[25]  Matthias Domke,et al.  Ultrafast pump-probe microscopy with high temporal dynamic range. , 2012, Optics express.

[26]  Masaaki Sakakura,et al.  Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals. , 2011, Optics express.

[27]  Peter Balling,et al.  Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations , 2011 .

[28]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[29]  S. Nikumb,et al.  Femtosecond laser micromilling of Si wafers , 2008 .

[30]  M. Obara,et al.  Heat-affected zone and ablation rate of copper ablated with femtosecond laser , 2005 .

[31]  Mengyan Shen,et al.  Morphology of femtosecond-laser-ablated borosilicate glass surfaces , 2003 .

[32]  Guillaume Petite,et al.  Ablation threshold dependence on pulse duration for copper , 2002 .

[33]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[34]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[35]  Juergen Jandeleit,et al.  Picosecond laser ablation of thin copper films , 1996 .

[36]  Peter Berger,et al.  Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation , 1995 .

[37]  J. Lunney,et al.  Pulsed laser ablation of copper , 1995 .

[38]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[39]  J. H. Marburger,et al.  Computer Studies in Self-Focusing , 1969 .

[40]  J. Cole,et al.  Similarity and Dimensional Methods in Mechanics , 1960 .