A fuzzy grassroots ontology for improving social semantic web search

The web is continuously evolving into a collection of many data, which results in the interest to collect and merge these data in a meaningful way. Based on that web data, this paper describes the building of an ontology resting on fuzzy clustering techniques. Through continual harvesting folksonomies by web agents, an entire automatic fuzzy grassroots ontology is built. This self-updating ontology can then be used for several practical applications in fields such as web structuring, web searching and web knowledge visualization.A potential application for online reputation analysis, added value and possible future studies are discussed in the conclusion.

[1]  Yusef Hassan-Montero,et al.  Improving Tag-Clouds as Visual Information Retrieval Interfaces , 2024, 2401.04947.

[2]  Grard Govaert Data Analysis , 2009 .

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Owen Kaser,et al.  Tag-Cloud Drawing: Algorithms for Cloud Visualization , 2007, ArXiv.

[5]  Witold Pedrycz,et al.  Advances in Fuzzy Clustering and its Applications , 2007 .

[6]  Jakob Voß,et al.  Tagging, Folksonomy & Co - Renaissance of Manual Indexing? , 2007, ArXiv.

[7]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[8]  Robert van Liere,et al.  Trends in Interactive Visualization: State-of-the-Art Survey , 2008 .

[9]  Tam V. Nguyen,et al.  Fuzzy Online Reputation Analysis Framework , 2013 .

[10]  Andreas Meier,et al.  Fuzzy Classification on Relational Databases , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[11]  Adrian Kuhn,et al.  Extraktion und kartografische Visualisierung von Informationen aus Weblogs , 2010, HMD Prax. Wirtsch..

[12]  Katrin Weller,et al.  Knowledge Representation in the Social Semantic Web , 2010 .

[13]  Jorge S. Cardoso The Semantic Web Vision: Where Are We? , 2007, IEEE Intelligent Systems.

[14]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[15]  Limin Fu,et al.  FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data , 2007, BMC Bioinformatics.

[16]  David O. Holmes,et al.  Improving precision and recall for Soundex retrieval , 2002, Proceedings. International Conference on Information Technology: Coding and Computing.

[17]  Petri Vuorimaa,et al.  Fuzzy self-organizing map , 1994 .