Some Remarks on the Location of Non-Asymptotic Zeros of Whittaker and Kummer Hypergeometric Functions
暂无分享,去创建一个
Silviu-Iulian Niculescu | Guilherme Mazanti | Islam Boussaada | S. Niculescu | I. Boussaada | Guilherme Mazanti
[1] E. Hille. Oscillation theorems in the complex domain , 1922 .
[2] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[3] R. S. Varga,et al. On the zeros and poles of Padé approximants toez. III , 1978 .
[4] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[5] F. Tricomi. Über die Abzählung der Nullstellen der konfluenten hypergeometrischen Funktionen , 1950 .
[6] H. Buchholz,et al. The Confluent Hypergeometric Function: with Special Emphasis on its Applications , 1969 .
[7] P. Wynn,et al. On the zeros of certain confluent hypergeometric functions , 1973 .
[8] Joel Nothman,et al. Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python , 2020, Nature Methods.
[9] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[10] O. Perron,et al. Die Lehre von den Kettenbrüchen , 2013 .
[11] Silviu-Iulian Niculescu,et al. Multiplicity-induced-dominancy for delay-differential equations of retarded type , 2020, Journal of Differential Equations.
[12] Richard S. Varga,et al. On the zeros and poles of Padé approximants toez , 1975 .
[13] Silviu-Iulian Niculescu,et al. Characterizing the Codimension of Zero Singularities for Time-Delay Systems , 2016, Acta Applicandae Mathematicae.
[14] H. Buchholz. The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.