Loss of Life Estimation of Distribution Transformers Considering Corrupted AMI Data Recovery and Field Verification

[1]  Guido Carpinelli,et al.  A Probabilistic Approach for Forecasting the Allowable Current of Oil-Immersed Transformers , 2018, IEEE Transactions on Power Delivery.

[2]  D.J. Tylavsky,et al.  Transformer thermal modeling: improving reliability using data quality control , 2006, IEEE Transactions on Power Delivery.

[3]  P. Verho,et al.  Studies to Utilize Loading Guides and ANN for Oil-Immersed Distribution Transformer Condition Monitoring , 2007, IEEE Transactions on Power Delivery.

[4]  G. Swift,et al.  A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit , 2001 .

[5]  W.H. Tang,et al.  A simplified transformer thermal model based on thermal-electric analogy , 2004, IEEE Transactions on Power Delivery.

[6]  P. Costa,et al.  Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers , 2007, IEEE Transactions on Power Delivery.

[7]  Zoran Radakovic,et al.  Loading of transformers in conditions of controlled cooling system , 2014 .

[8]  Bruce Stephen,et al.  Incorporating Practice Theory in Sub-Profile Models for Short Term Aggregated Residential Load Forecasting , 2017, IEEE Transactions on Smart Grid.

[9]  Marcelo Godoy Simões,et al.  General Smart Meter Guidelines to Accurately Assess the Aging of Distribution Transformers , 2014, IEEE Transactions on Smart Grid.

[10]  Gehao Sheng,et al.  Cleaning Method for Status Monitoring Data of Power Equipment Based on Stacked Denoising Autoencoders , 2017, IEEE Access.

[11]  Yuan Zhang,et al.  Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network , 2019, IEEE Transactions on Smart Grid.

[12]  Susan Redline,et al.  IEEE Guide for Loading Mineral- Oil-Immersed Transformers and Step-Voltage Regulators , 2012 .

[13]  F. Gomide,et al.  Participatory Learning in Power Transformers Thermal Modeling , 2008, IEEE Transactions on Power Delivery.

[14]  Heng Huang,et al.  Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities , 2015, IEEE Transactions on Smart Grid.

[15]  Brian G. Stewart,et al.  Adaptive Power Transformer Lifetime Predictions Through Machine Learning and Uncertainty Modeling in Nuclear Power Plants , 2019, IEEE Transactions on Industrial Electronics.

[16]  M. Lehtonen,et al.  Dynamic thermal modelling of power transformers , 2004, IEEE Transactions on Power Delivery.

[17]  Jeff Frolik,et al.  Data-Driven Thermal Modeling of Residential Service Transformers , 2015, IEEE Transactions on Smart Grid.

[18]  V. M. Catterson,et al.  Prognostics of transformer paper insulation using statistical particle filtering of on-line data , 2016, IEEE Electrical Insulation Magazine.

[19]  Stefan Tenbohlen,et al.  Real-Time Evaluation of the Dynamic Loading Capability of Indoor Distribution Transformers , 2018, IEEE Transactions on Power Delivery.

[20]  Tapan Kumar Saha,et al.  On Particle Filtering for Power Transformer Remaining Useful Life Estimation , 2018, IEEE Transactions on Power Delivery.

[21]  Chongqing Kang,et al.  An Ensemble Forecasting Method for the Aggregated Load With Subprofiles , 2018, IEEE Transactions on Smart Grid.

[22]  Zachary Chase Lipton A Critical Review of Recurrent Neural Networks for Sequence Learning , 2015, ArXiv.