Surface Plasmon Generation by Subwavelength Isolated Objects

A fully vectorial Fourier-modal-method approach combined with the Lorentz reciprocity theorem is used to study the capability of isolated subwavelength objects to launch surface plasmon polaritons on a nearby surface under illumination by light. Various 2-D subwavelength geometries, like grooves or ridges, are considered and compared. The highest efficiencies are achieved for metallic ridges isolated from the surface by a dielectric post. We derive general trends with respect to the geometry, the incidence angle, and the frequency of the incident illumination. We additionally discuss particular effects that provide very high efficiencies or unidirectional launchings. The predictions may be useful for further understanding and engineering plasmonic systems formed by nanoparticle ensembles.

[1]  A. Dereux,et al.  Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments. , 2007, Optics express.

[2]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[3]  Philippe Lalanne,et al.  Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[5]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[6]  J P Hugonin,et al.  Use of grating theories in integrated optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[8]  P Lalanne,et al.  Theoretical and computational concepts for periodic optical waveguides. , 2007, Optics express.

[9]  T. Ishihara,et al.  Sub-100-nm Photolithography Based on Plasmon Resonance , 2004 .

[10]  F. García-Vidal,et al.  Surface plasmon polariton scattering by finite-size nanoparticles , 2007 .

[11]  Anne-Laure Baudrion,et al.  Influence of the filling factor on the spectral properties of plasmonic crystals , 2006 .

[12]  Michael I. Haftel,et al.  Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures , 2004 .

[13]  Jean-Claude Weeber,et al.  Launching and decoupling surface plasmons via micro-gratings , 2003 .

[14]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[15]  P Lalanne,et al.  Approximate model for surface-plasmon generation at slit apertures. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[17]  Jean-Luc Pelouard,et al.  Efficient light absorption in metal–semiconductor–metal nanostructures , 2004 .

[18]  広 久保田,et al.  Principle of Optics , 1960 .

[19]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[20]  L. Botten,et al.  Double gratings and their applications as Fabry-Perot interferometers , 1979 .

[21]  H. Driel,et al.  Polarization and wavelength dependence of metal‐semiconductor‐metal photodetector response , 1994 .

[22]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[23]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[24]  Karl-Heinz Brenner,et al.  Transition of the scalar field at a refracting surface in the generalized Kirchhoff diffraction theory , 1995 .

[25]  David R. Smith,et al.  Plasmon resonances of silver nanowires with a nonregular cross section , 2001 .

[26]  Neil Genzlinger A. and Q , 2006 .

[27]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .