Desert ant navigation: how miniature brains solve complex tasks
暂无分享,去创建一个
[1] G. P. Baerends. Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris Jur , 1941 .
[2] Karl von Frisch,et al. Tanzsprache und Orientierung der Bienen , 1965 .
[3] R. Wehner,et al. The Visual Orientation of Desert Ants, Cataglyphis bicolor, by Means of Terrestrial Cues , 1972 .
[4] Kuno Kirschfeld,et al. Notizen: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes / The Number of Receptors Necessary for Determining the Position of the E-Vector of Linearly Polarized Light , 1972 .
[5] K. Kirschfeld,et al. Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des Vektors linear polarisierten Lichtes , 1972 .
[6] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[7] R. Martin,et al. Relative brain size and basal metabolic rate in terrestrial vertebrates , 1981, Nature.
[8] R. Wehner. Himmelsnavigation bei Insekten : Neurophysiologie und Verhalten , 1982 .
[9] Thomas S. Collett,et al. Experiments and Models , 1983 .
[10] R. Wehner,et al. Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae) , 1983 .
[11] Rüdiger Wehner,et al. The POL area of the honey bee's eye: behavioural evidence , 1985 .
[12] R. Wehner. Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert) , 1987 .
[13] Thomas Labhart,et al. Polarization-opponent interneurons in the insect visual system , 1988, Nature.
[14] R Wehner,et al. Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[15] S. Gaulin,et al. Sexual selection for spatial-learning ability , 1989, Animal Behaviour.
[16] D. Sherry,et al. Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[17] S. Wehner,et al. Insect navigation: use of maps or Ariadne's thread ? , 1990 .
[18] D. Penny. The comparative method in evolutionary biology , 1992 .
[19] Plasticity of spatial memory in honey bees: reorientation following colony fission , 1993, Animal Behaviour.
[20] R. Wehner,et al. The polarization-vision project: championing organismic biology , 1994 .
[21] D. Brodbeck. Memory for spatial and local cues: A comparison of a storing and a nonstoring species , 1994 .
[22] A C Kamil,et al. Differences in hippocampal volume among food storing corvids. , 1996, Brain, behavior and evolution.
[23] S. Healy,et al. Food storing and the hippocampus in Paridae. , 1996, Brain, behavior and evolution.
[24] R. Wehner,et al. Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.
[25] Uwe Homberg,et al. Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.
[26] U. Greggers,et al. Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process , 1997 .
[27] T. Collett,et al. Local and global vectors in desert ant navigation , 1998, Nature.
[28] T. Collett,et al. Multiple stored views and landmark guidance in ants , 1998, Nature.
[29] R. Menzel,et al. Bees travel novel homeward routes by integrating separately acquired vector memories , 1998, Animal Behaviour.
[30] Labhart,et al. How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone , 1999, The Journal of experimental biology.
[31] T. Collett,et al. Calibration of vector navigation in desert ants , 1999, Current Biology.
[32] S. Healy,et al. Spatial accuracy in food-storing and nonstoring birds , 1999, Animal Behaviour.
[33] Thomas S. Collett,et al. Contextual modulation of visuomotor associations in bumble‐bees (Bombus terrestris) , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[34] T. Labhart,et al. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.
[35] T. Labhart. Polarization-Sensitive Interneurons in the Optic Lobe of the Desert Ant Cataglyphis bicolor , 2000, Naturwissenschaften.
[36] C. Gallistel. The Replacement of General-Purpose Learning Models with Adaptively Specialized Learning Modules , 2000 .
[37] R. Menzel,et al. Two spatial memories for honeybee navigation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[38] R. Pfeifer,et al. A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..
[39] R. Biegler. Possible uses of path integration in animal navigation , 2000 .
[40] Matthew Collett,et al. Path integration in insects , 2000, Current Opinion in Neurobiology.
[41] S. Healy,et al. A larger hippocampus is associated with longer-lasting spatial memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[42] G. Horváth,et al. How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. , 2001, The Journal of experimental biology.
[43] R. Menzel,et al. Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.
[44] T. Collett,et al. The guidance of desert ants by extended landmarks. , 2001, The Journal of experimental biology.
[45] U. Homberg,et al. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae , 2001, The Journal of comparative neurology.
[46] R Wehner,et al. Egocentric information helps desert ants to navigate around familiar obstacles. , 2001, The Journal of experimental biology.
[47] T Labhart,et al. Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. , 2001, The Journal of experimental biology.
[48] J. R. Riley,et al. Design considerations for an harmonic radar to investigate the flight of insects at low altitude , 2002 .
[49] Thomas S Collett,et al. Learning speed and contextual isolation in bumblebees. , 2002, The Journal of experimental biology.
[50] E. Spelke,et al. Human Spatial Representation: Insights from Animals , 2002 .
[51] R. Strauss. The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.
[52] Uwe Homberg,et al. Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.
[53] Fred C. Dyer,et al. Motivation and vector navigation in honey bees , 2002, Naturwissenschaften.
[54] R. Wehner,et al. Calibration processes in desert ant navigation: vector courses and systematic search , 2002, Journal of Comparative Physiology A.
[55] Rüdiger Wehner,et al. Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? , 2002, The Journal of experimental biology.
[56] J. Zeil,et al. Robust judgement of inter-object distance by an arthropod , 2003, Nature.
[57] Rüdiger Wehner,et al. Landmark memories are more robust when acquired at the nest site than en route: experiments in desert ants , 2003, Naturwissenschaften.
[58] Mandyam V. Srinivasan,et al. Path integration in insects , 2003 .
[59] R. Wehner,et al. Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs , 2003, Journal of Comparative Physiology A.
[60] S. N. Fry,et al. Sequence learning by honeybees , 1993, Journal of Comparative Physiology A.
[61] T. S. Collett,et al. Learnt sensori-motor mappings in honeybees: interpolation and its possible relevance to navigation , 1995, Journal of Comparative Physiology A.
[62] Georg Hartmann,et al. The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.
[63] Rüdiger Wehner,et al. How bees analyse the polarization patterns in the sky , 1984, Journal of Comparative Physiology A.
[64] K. Frisch,et al. Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.
[65] C. Nievergelt,et al. Bees navigate by using vectors and routes rather than maps , 1990, Naturwissenschaften.
[66] P.-P. Grasse. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.