Desert ant navigation: how miniature brains solve complex tasks

AbstractThis essay presents and discusses the state of the art in studies of desert ant (Cataglyphis) navigation. In dealing with behavioural performances, neural mechanisms, and ecological functions these studies ultimately aim at an evolutionary understanding of the insect's navigational toolkit: its skylight (polarization) compass, its path integrator, its view-dependent ways of recognizing places and following landmark routes, and its strategies of flexibly interlinking these modes of navigation to generate amazingly rich behavioural outputs. The general message is that Cataglyphis uses path integration as an egocentric guideline to acquire continually updated spatial information about places and routes. Hence, it relies on procedural knowledge, and largely context-dependent retrieval of such knowledge, rather than on all-embracing geocentred representations of space.

[1]  G. P. Baerends Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris Jur , 1941 .

[2]  Karl von Frisch,et al.  Tanzsprache und Orientierung der Bienen , 1965 .

[3]  R. Wehner,et al.  The Visual Orientation of Desert Ants, Cataglyphis bicolor, by Means of Terrestrial Cues , 1972 .

[4]  Kuno Kirschfeld,et al.  Notizen: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes / The Number of Receptors Necessary for Determining the Position of the E-Vector of Linearly Polarized Light , 1972 .

[5]  K. Kirschfeld,et al.  Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des Vektors linear polarisierten Lichtes , 1972 .

[6]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[7]  R. Martin,et al.  Relative brain size and basal metabolic rate in terrestrial vertebrates , 1981, Nature.

[8]  R. Wehner Himmelsnavigation bei Insekten : Neurophysiologie und Verhalten , 1982 .

[9]  Thomas S. Collett,et al.  Experiments and Models , 1983 .

[10]  R. Wehner,et al.  Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae) , 1983 .

[11]  Rüdiger Wehner,et al.  The POL area of the honey bee's eye: behavioural evidence , 1985 .

[12]  R. Wehner Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert) , 1987 .

[13]  Thomas Labhart,et al.  Polarization-opponent interneurons in the insect visual system , 1988, Nature.

[14]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Gaulin,et al.  Sexual selection for spatial-learning ability , 1989, Animal Behaviour.

[16]  D. Sherry,et al.  Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Wehner,et al.  Insect navigation: use of maps or Ariadne's thread ? , 1990 .

[18]  D. Penny The comparative method in evolutionary biology , 1992 .

[19]  Plasticity of spatial memory in honey bees: reorientation following colony fission , 1993, Animal Behaviour.

[20]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[21]  D. Brodbeck Memory for spatial and local cues: A comparison of a storing and a nonstoring species , 1994 .

[22]  A C Kamil,et al.  Differences in hippocampal volume among food storing corvids. , 1996, Brain, behavior and evolution.

[23]  S. Healy,et al.  Food storing and the hippocampus in Paridae. , 1996, Brain, behavior and evolution.

[24]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[25]  Uwe Homberg,et al.  Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.

[26]  U. Greggers,et al.  Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process , 1997 .

[27]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[28]  T. Collett,et al.  Multiple stored views and landmark guidance in ants , 1998, Nature.

[29]  R. Menzel,et al.  Bees travel novel homeward routes by integrating separately acquired vector memories , 1998, Animal Behaviour.

[30]  Labhart,et al.  How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone , 1999, The Journal of experimental biology.

[31]  T. Collett,et al.  Calibration of vector navigation in desert ants , 1999, Current Biology.

[32]  S. Healy,et al.  Spatial accuracy in food-storing and nonstoring birds , 1999, Animal Behaviour.

[33]  Thomas S. Collett,et al.  Contextual modulation of visuomotor associations in bumble‐bees (Bombus terrestris) , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[35]  T. Labhart Polarization-Sensitive Interneurons in the Optic Lobe of the Desert Ant Cataglyphis bicolor , 2000, Naturwissenschaften.

[36]  C. Gallistel The Replacement of General-Purpose Learning Models with Adaptively Specialized Learning Modules , 2000 .

[37]  R. Menzel,et al.  Two spatial memories for honeybee navigation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[39]  R. Biegler Possible uses of path integration in animal navigation , 2000 .

[40]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[41]  S. Healy,et al.  A larger hippocampus is associated with longer-lasting spatial memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Horváth,et al.  How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. , 2001, The Journal of experimental biology.

[43]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.

[44]  T. Collett,et al.  The guidance of desert ants by extended landmarks. , 2001, The Journal of experimental biology.

[45]  U. Homberg,et al.  Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae , 2001, The Journal of comparative neurology.

[46]  R Wehner,et al.  Egocentric information helps desert ants to navigate around familiar obstacles. , 2001, The Journal of experimental biology.

[47]  T Labhart,et al.  Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. , 2001, The Journal of experimental biology.

[48]  J. R. Riley,et al.  Design considerations for an harmonic radar to investigate the flight of insects at low altitude , 2002 .

[49]  Thomas S Collett,et al.  Learning speed and contextual isolation in bumblebees. , 2002, The Journal of experimental biology.

[50]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[51]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[52]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[53]  Fred C. Dyer,et al.  Motivation and vector navigation in honey bees , 2002, Naturwissenschaften.

[54]  R. Wehner,et al.  Calibration processes in desert ant navigation: vector courses and systematic search , 2002, Journal of Comparative Physiology A.

[55]  Rüdiger Wehner,et al.  Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? , 2002, The Journal of experimental biology.

[56]  J. Zeil,et al.  Robust judgement of inter-object distance by an arthropod , 2003, Nature.

[57]  Rüdiger Wehner,et al.  Landmark memories are more robust when acquired at the nest site than en route: experiments in desert ants , 2003, Naturwissenschaften.

[58]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[59]  R. Wehner,et al.  Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs , 2003, Journal of Comparative Physiology A.

[60]  S. N. Fry,et al.  Sequence learning by honeybees , 1993, Journal of Comparative Physiology A.

[61]  T. S. Collett,et al.  Learnt sensori-motor mappings in honeybees: interpolation and its possible relevance to navigation , 1995, Journal of Comparative Physiology A.

[62]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[63]  Rüdiger Wehner,et al.  How bees analyse the polarization patterns in the sky , 1984, Journal of Comparative Physiology A.

[64]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[65]  C. Nievergelt,et al.  Bees navigate by using vectors and routes rather than maps , 1990, Naturwissenschaften.

[66]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.