Design of Robust Control Systems for a Hypersonic Aircraft

Robuste ightcontrolsystemsaresynthesizedforthelongitudinalmotionofahypersonicaircraft.Aircraftmotion is modeled by nonlinear longitudinal dynamic equations containing 28 uncertain parameters. Each controller is designed using a genetic algorithm to search a design coefe cient space; Monte Carlo evaluation at each search point estimates stability and performance robustness. Robustness of a compensator is indicated by the probability that stability and performance of the closed-loop system will fall within allowable bounds, given likely parameter variations. A stochastic cost function containing engineering design criteria (in this case, a stability metric plus 38 step-response metrics )is minimized, producing feasible control system coefe cient sets for specie ed control system structures. This approach trades the likelihood of satisfying design goals against each other, and it identie es the plant parameter uncertainties that are most likely to compromise robustness goals. The approach makes efe cient useofcomputationaltoolsandbroadlyacceptedengineeringknowledgetoproducepracticalcontrolsystemdesigns.

[1]  B. Golden,et al.  Interval estimation of a global optimum for large combinatorial problems , 1979 .

[2]  Robert F. Stengel,et al.  Searching for robust minimal-order compensators , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[3]  Robert F. Stengel,et al.  Stochastic measures of performance robustness in aircraft control systems , 1992 .

[4]  Robert F. Stengel,et al.  Application of stochastic robustness to aircraft control systems , 1991 .

[5]  C. I. Cruz,et al.  Hypersonic vehicle simulation model: Winged-cone configuration , 1990 .

[6]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  Robert F. Stengel,et al.  A monte carlo approach to the analysis of control system robustness , 1993, Autom..

[9]  Christopher Ian Marrison,et al.  The design of control laws for uncertain dynamic systems using stochastic robustness metrics , 1995 .

[10]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[11]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[12]  P. Cooke,et al.  Statistical inference for bounds of random variables , 1979 .

[13]  Robert F. Stengel,et al.  Reply by the authors to J. J. Gribble , 1995 .

[14]  John R. Broussard,et al.  Digital controllers for VTOL aircraft , 1976 .

[15]  Wolfgang Hahn,et al.  Theory and Application of Liapunov's Direct Method , 1963 .

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Michael Athans,et al.  Closed-loop structural stability for linear-quadratic optimal systems , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[19]  Y. R. Mayhew,et al.  Thermodynamic and transport properties of fluids , 1967 .

[20]  R. Stengel,et al.  Stochastic robustness synthesis applied to a benchmark control problem , 1995 .

[21]  John R. Broussard,et al.  Digital flight control design for a tandem-rotor helicopter , 1977, Autom..

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[24]  Robert F. Stengel Altitude stability in supersonic cruising flight , 1970 .

[25]  E. Behrens Reply by Author , 1968 .

[26]  Robert F. Stengel,et al.  Robustness of solutions to a benchmark control problem , 1992 .