Periodic behaviors in multi-agent systems with input saturation constraints

In this paper, we give conditions for the existence of periodic behaviors in a multi-agent system of identical discrete-time double integrators with input saturation constraints. If the feedback gain parameters of the controllers, which are based on relative state measurements of the agent itself and its neighboring agents, are bounded by a value depending on the largest eigenvalue of the Laplacian matrix, then the multi-agent system exhibits a periodic solution for certain initial conditions.

[1]  Karl Henrik Johansson,et al.  Self-oscillations and sliding in Relay Feedback Systems: Symmetry and bifurcations , 2001, Int. J. Bifurc. Chaos.

[2]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[3]  K. Henrik,et al.  Limit Cycles with Chattering in Relay Feedback Systems , 1997 .

[4]  Ali Saberi,et al.  Semi-global regulation of output synchronization for heterogeneous networks of non-introspective, invertible agents subject to actuator saturation , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[5]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[6]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[7]  Wei Wei,et al.  Consensus problems for linear time-invariant multi-agent systems with saturation constraints , 2011 .

[8]  Sezai Emre Tuna,et al.  Synchronizing linear systems via partial-state coupling , 2008, Autom..

[9]  Chai Wah Wu,et al.  Synchronization in Complex Networks of Nonlinear Dynamical Systems , 2008 .

[10]  Jorge Cortés,et al.  Finite-time convergent gradient flows with applications to network consensus , 2006, Autom..

[11]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[12]  Karl Henrik Johansson,et al.  Fast switches in relay feedback systems , 1999, Autom..

[13]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[14]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[15]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[16]  Mario Martelli,et al.  Introduction to discrete dynamical systems and chaos , 1999 .

[17]  Ali Saberi,et al.  Dynamic behavior of the discrete‐time double integrator with saturated locally stabilizing linear state feedback laws , 2013 .

[18]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[19]  Calin Belta,et al.  Optimal path planning for surveillance with temporal-logic constraints* , 2011, Int. J. Robotics Res..

[20]  John T. Wen,et al.  Cooperative Control Design - A Systematic, Passivity-Based Approach , 2011, Communications and control engineering.

[21]  Mario Martelli,et al.  Introduction to Discrete Dynamical Systems and Chaos: Martelli/Introduction , 1999 .

[22]  Munther A. Dahleh,et al.  Global stability of relay feedback systems , 2001, IEEE Trans. Autom. Control..

[23]  Hyungbo Shim,et al.  Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach , 2009, Autom..

[24]  Lihua Xie,et al.  Network Topology and Communication Data Rate for Consensusability of Discrete-Time Multi-Agent Systems , 2011, IEEE Transactions on Automatic Control.

[25]  Ali Saberi,et al.  Semi‐global regulation of output synchronization for heterogeneous networks of non‐introspective, invertible agents subject to actuator saturation , 2014 .

[26]  T. Glad,et al.  On Diffusion Driven Oscillations in Coupled Dynamical Systems , 1999 .

[27]  Ziyang Meng,et al.  On global leader-following consensus of identical linear dynamic systems subject to actuator saturation , 2013, Syst. Control. Lett..

[28]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[29]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  John T. Wen,et al.  Passivity As a Design Tool for Cooperative Control , 2011 .

[31]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[32]  Yongcan Cao,et al.  Distributed Coordination of Multi-agent Networks , 2011 .

[33]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[34]  Sandip Roy,et al.  Constructing consensus controllers for networks with identical general linear agents , 2010 .

[35]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[36]  Ziyang Meng,et al.  Global consensus in homogeneous networks of discrete-time agents subject to actuator saturation , 2013, 2013 European Control Conference (ECC).

[37]  Ali Saberi,et al.  Output synchronization for heterogeneous networks of non-introspective agents , 2012, Autom..

[38]  Dongmei Xie,et al.  Consensus of second-order discrete-time multi-agent systems with fixed topology , 2012 .

[39]  Wenwu Yu,et al.  Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems , 2010, Autom..