Exfoliation of a non-van der Waals material from iron ore hematite

[1]  B. M. Rao,et al.  Anodically grown functional oxide nanotubes and applications , 2016 .

[2]  P. Ajayan,et al.  Two-dimensional van der Waals materials , 2016 .

[3]  Somaditya Banerjee,et al.  Meghnad Saha: Physicist and nationalist , 2016 .

[4]  Ali Javey,et al.  Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.

[5]  D. Chun,et al.  α-Fe2O3 as a photocatalytic material: A review , 2015 .

[6]  P. Thomas,et al.  Nanosecond and ultrafast optical power limiting in luminescent Fe2O3 hexagonal nanomorphotype , 2015 .

[7]  M. Marelli,et al.  Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[8]  Y. Tong,et al.  Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors , 2014, Advanced materials.

[9]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[10]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[11]  H. Xiang,et al.  Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics. , 2013, The journal of physical chemistry letters.

[12]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[13]  Aron Walsh,et al.  Band alignment of rutile and anatase TiO 2 , 2013 .

[14]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[15]  Yat Li,et al.  Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties , 2012 .

[16]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[17]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[18]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[19]  Masoud Aryanpour,et al.  Development of a reactive force field for iron-oxyhydroxide systems. , 2010, The journal of physical chemistry. A.

[20]  Gao Qian Anodic growth of ordered TiO_2 nanotube arrays , 2010 .

[21]  C. Grimes,et al.  Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties , 2009 .

[22]  A. Teja,et al.  Synthesis, properties, and applications of magnetic iron oxide nanoparticles , 2009 .

[23]  P. Schmuki,et al.  Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles , 2009 .

[24]  Adrian H. Hill,et al.  Neutron Diffraction Study of Mesoporous and Bulk Hematite, α-Fe2O3 , 2008 .

[25]  Yuqiu Wang,et al.  Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. , 2006, The journal of physical chemistry. B.

[26]  P. Bruce,et al.  Ordered mesoporous Fe2O3 with crystalline walls. , 2006, Journal of the American Chemical Society.

[27]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[28]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Shunchong Wang,et al.  Size and structure effect on optical transitions of iron oxide nanocrystals , 2005 .

[30]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[31]  D. Fiorani,et al.  Size effects in the spin-flop transition of hematite nanoparticles , 2004 .

[32]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[33]  Z. Wang,et al.  Exchange‐Coupled Nanocomposite Magnets by Nanoparticle Self‐Assembly. , 2003 .

[34]  R. Harrison,et al.  Lamellar magnetism in the haematite–ilmenite series as an explanation for strong remanent magnetization , 2002, Nature.

[35]  T. Duffy,et al.  Raman spectroscopy of Fe2O3 to 62 GPa , 2002 .

[36]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[37]  P. P. Lottici,et al.  Micro‐Raman investigation of iron oxide films and powders produced by sol–gel syntheses , 1999 .

[38]  R. Brand,et al.  The crucial role of particle morphology in the magnetic properties of haematite , 1999 .

[39]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[40]  Sam F. Y. Li,et al.  Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates , 1997 .

[41]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[42]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[43]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[44]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[45]  K. Mccarty Inelastic light scattering in α-Fe2O3: phonon VS magnon scattering , 1988 .

[46]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[47]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[48]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[49]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[50]  J. Kennedy,et al.  FLATBAND POTENTIALS AND DONOR DENSITIES OF POLYCRYSTALLINE α-IRON(III) OXIDE DETERMINED FROM MOTT-SCHOTTKY PLOTS , 1978 .

[51]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[52]  F. Grønvold,et al.  Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition , 1974 .

[53]  D. Schroeer,et al.  Morin Transition in a-Fe_{2}O_{3} Microcyrstals , 1967 .

[54]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[55]  F. Morin Magnetic Susceptibility of αFe 2 O 3 and αFe 2 O 3 with Added Titanium , 1950 .