Exfoliation of a non-van der Waals material from iron ore hematite
暂无分享,去创建一个
Robert Vajtai | Pulickel M. Ajayan | Ching-Wu Chu | Vidya Kochat | Douglas S. Galvao | Oomman K. Varghese | B. M. Rao | Maggie Paulose | P. Ajayan | R. Vajtai | D. Galvão | A. Harutyunyan | O. Varghese | P. V. van Aken | M. Paulose | A. Martí | C. Chu | V. Kochat | C. Tiwary | A. Apte | Chandra Sekhar Tiwary | Angel A. Martí | Liangzi Deng | Avetik R. Harutyunyan | Amey Apte | Gelu Costin | Sruthi Radhakrishnan | C. Woellner | S. K. Sinha | G. Costin | Aravind Puthirath Balan | Cristiano F. Woellner | Shyam K. Sinha | Carlos de los Reyes | Banki Manmadha Rao | Ram Neupane | Peter A. van Aken | Anantharaman Malie Madom Ramaswamy Iyer | L. Deng | Sruthi Radhakrishnan | R. Neupane | Aravind Puthirath Balan | C. D. Reyes | Anantharaman Malie Madom Ramaswamy Iyer
[1] B. M. Rao,et al. Anodically grown functional oxide nanotubes and applications , 2016 .
[2] P. Ajayan,et al. Two-dimensional van der Waals materials , 2016 .
[3] Somaditya Banerjee,et al. Meghnad Saha: Physicist and nationalist , 2016 .
[4] Ali Javey,et al. Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.
[5] D. Chun,et al. α-Fe2O3 as a photocatalytic material: A review , 2015 .
[6] P. Thomas,et al. Nanosecond and ultrafast optical power limiting in luminescent Fe2O3 hexagonal nanomorphotype , 2015 .
[7] M. Marelli,et al. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.
[8] Y. Tong,et al. Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors , 2014, Advanced materials.
[9] A. Walsh,et al. Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.
[10] E. Johnston-Halperin,et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.
[11] H. Xiang,et al. Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics. , 2013, The journal of physical chemistry letters.
[12] Hongzheng Chen,et al. Graphene-like two-dimensional materials. , 2013, Chemical reviews.
[13] Aron Walsh,et al. Band alignment of rutile and anatase TiO 2 , 2013 .
[14] M. Seery,et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .
[15] Yat Li,et al. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties , 2012 .
[16] G. Henkelman,et al. Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.
[17] Michael Grätzel,et al. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.
[18] Julio Gómez-Herrero,et al. 2D materials: to graphene and beyond. , 2011, Nanoscale.
[19] Masoud Aryanpour,et al. Development of a reactive force field for iron-oxyhydroxide systems. , 2010, The journal of physical chemistry. A.
[20] Gao Qian. Anodic growth of ordered TiO_2 nanotube arrays , 2010 .
[21] C. Grimes,et al. Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties , 2009 .
[22] A. Teja,et al. Synthesis, properties, and applications of magnetic iron oxide nanoparticles , 2009 .
[23] P. Schmuki,et al. Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles , 2009 .
[24] Adrian H. Hill,et al. Neutron Diffraction Study of Mesoporous and Bulk Hematite, α-Fe2O3 , 2008 .
[25] Yuqiu Wang,et al. Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. , 2006, The journal of physical chemistry. B.
[26] P. Bruce,et al. Ordered mesoporous Fe2O3 with crystalline walls. , 2006, Journal of the American Chemical Society.
[27] Matt Probert,et al. First principles methods using CASTEP , 2005 .
[28] K. Novoselov,et al. Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[29] Shunchong Wang,et al. Size and structure effect on optical transitions of iron oxide nanocrystals , 2005 .
[30] Jun Chen,et al. α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .
[31] D. Fiorani,et al. Size effects in the spin-flop transition of hematite nanoparticles , 2004 .
[32] Jürgen Hafner,et al. First-principles calculation of the structure and magnetic phases of hematite , 2004 .
[33] Z. Wang,et al. Exchange‐Coupled Nanocomposite Magnets by Nanoparticle Self‐Assembly. , 2003 .
[34] R. Harrison,et al. Lamellar magnetism in the haematite–ilmenite series as an explanation for strong remanent magnetization , 2002, Nature.
[35] T. Duffy,et al. Raman spectroscopy of Fe2O3 to 62 GPa , 2002 .
[36] A. V. Duin,et al. ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .
[37] P. P. Lottici,et al. Micro‐Raman investigation of iron oxide films and powders produced by sol–gel syntheses , 1999 .
[38] R. Brand,et al. The crucial role of particle morphology in the magnetic properties of haematite , 1999 .
[39] Dalva Lúcia Araújo de Faria,et al. Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .
[40] Sam F. Y. Li,et al. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates , 1997 .
[41] U. Schwertmann,et al. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .
[42] R. C. King,et al. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .
[43] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[44] Jackson,et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.
[45] K. Mccarty. Inelastic light scattering in α-Fe2O3: phonon VS magnon scattering , 1988 .
[46] Philippe M. Fauchet,et al. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .
[47] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[48] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[49] Fujio Izumi,et al. Raman spectrum of anatase, TiO2 , 1978 .
[50] J. Kennedy,et al. FLATBAND POTENTIALS AND DONOR DENSITIES OF POLYCRYSTALLINE α-IRON(III) OXIDE DETERMINED FROM MOTT-SCHOTTKY PLOTS , 1978 .
[51] J. Kennedy,et al. Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .
[52] F. Grønvold,et al. Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition , 1974 .
[53] D. Schroeer,et al. Morin Transition in a-Fe_{2}O_{3} Microcyrstals , 1967 .
[54] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[55] F. Morin. Magnetic Susceptibility of αFe 2 O 3 and αFe 2 O 3 with Added Titanium , 1950 .