Chemical natures and distributions of metal impurities in multicrystalline silicon materials

We present a comprehensive summary of our observations of metal-rich particles in multicrystalline silicon (mc-Si) solar cell materials from multiple vendors, including directionally-solidified ingot-grown, sheet, and ribbon, as well as multicrystalline float zone materials contaminated during growth. In each material, the elemental nature, chemical states, and distributions of metal-rich particles are assessed by synchrotron-based analytical x-ray microprobe techniques. Certain universal physical principles appear to govern the behavior of metals in nearly all materials: (a) Two types of metal-rich particles can be observed (metal silicide nanoprecipitates and metal-rich inclusions up to tens of microns in size, frequently oxidized), (b) spatial distributions of individual elements strongly depend on their solubility and diffusivity, and (c) strong interactions exist between metals and certain types of structural defects. Differences in the distribution and elemental nature of metal contamination between different mc-Si materials can largely be explained by variations in crystal growth parameters, structural defect types, and contamination sources. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Jack I. Hanoka,et al.  An overview of silicon ribbon growth technology , 2001 .

[2]  T. Buonassisi,et al.  X-ray beam induced current—a synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon , 2002 .

[3]  Richard Celestre,et al.  Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. , 2004, Journal of synchrotron radiation.

[4]  R. McDonald,et al.  Low-Background Instrumental Neutron Activation Analysis of Silicon Semiconductor Materials , 1995 .

[5]  D. Macdonald,et al.  Transition-metal profiles in a multicrystalline silicon ingot , 2005 .

[6]  Recombination Activity of Iron in Boron Doped Silicon , 2002 .

[7]  DISTRIBUTION AND FORMATION OF SILICON CARBIDE AND SILICON NITRIDE PRECIPITATES IN BLOCK-CAST MULTICRYSTALLINE SILICON , 2005 .

[8]  W. Koch,et al.  Silicon ingot casting: process development by numerical simulations , 2002 .

[9]  Dong-Soo Park,et al.  Extra‐Large Grains in the Silicon Nitride Ceramics Doped with Yttria and Hafnia , 2005 .

[10]  S. Pizzini Chemistry and Physics of Segregation of Impurities at Extended Defects in Silicon , 1999 .

[11]  J. Kalejs,et al.  Silicon ribbons and foils—state of the art , 2002 .

[12]  J. Kirkaldy,et al.  Effect of grain-boundaries on the solubility of copper in silicon , 1968 .

[13]  E. Stern,et al.  XAFS at the Pacific Northwest Consortium-Collaborative Access Team undulator beamline. , 2001, Journal of synchrotron radiation.

[14]  A. Soiland,et al.  SiC and Si3N4 inclusions in multicrystalline silicon ingots , 2004 .

[15]  B. Lai,et al.  Engineering metal-impurity nanodefects for low-cost solar cells , 2005, Nature materials.

[16]  E. Weber,et al.  Metal impurity precipitates in silicon: chemical state and stability , 1999 .

[17]  T. Buonassisi,et al.  X-ray beam induced current/microprobe x-ray fluorescence: synchrotron radiation based x-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon , 2004 .

[18]  B. Lai,et al.  Performance of a high-resolution x-ray microprobe at the Advanced Photon Source , 1999 .

[19]  J. Benton,et al.  Diagnostic Techniques for Semiconductor Materials and Devices , 1994 .

[20]  J. Kalejs Silicon Ribbons for Solar Cells , 2003 .

[21]  L. J. Geerligs,et al.  Casting Technologies for Solar Silicon Wafers: Block Casting and Ribbon-Growth-on-Substrate , 2003 .

[22]  Deren Yang,et al.  Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination , 2005 .

[23]  T. Sekiguchi,et al.  Electron-beam-induced current study of grain boundaries in multicrystalline silicon , 2004 .

[24]  J. Rand,et al.  Evaluation of Silicon Sheet Film Growth and Wafer Processing via Structural, Chemical and Electrical Diagnostics , 2003 .

[25]  A. Istratov,et al.  Iron contamination in silicon technology , 2000 .

[26]  O. Breitenstein,et al.  Observation of transition metals at shunt locations in multicrystalline silicon solar cells , 2004 .

[27]  M. Werner,et al.  Nanometer-scale metal precipitates in multicrystalline silicon solar cells , 2001 .

[28]  U. Gösele,et al.  Modeling of gettering of precipitated impurities from Si for carrier lifetime improvement in solar cell applications , 1999 .

[29]  Klaus Graff,et al.  Metal impurities in silicon-device fabrication , 1994 .

[30]  E. Weber,et al.  Competitive gettering of copper in Czochralski silicon by implantation‐induced cavities and internal gettering sites , 1996 .

[31]  M. Pickett,et al.  Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material , 2006 .

[32]  M. Pickett,et al.  Local Measurements of Diffusion Length and Chemical Character of Metal Clusters in Multicrystalline Silicon , 2005 .

[33]  J.R. Davis,et al.  Impurities in silicon solar cells , 1980, IEEE Transactions on Electron Devices.

[34]  V. Pavarajarn,et al.  Catalytic Effects of Metals on Direct Nitridation of Silicon , 2004 .

[35]  The influences of traps on the generation-recombination current in silicon diodes , 1980 .

[36]  S. Pizzini,et al.  Effect of nitrogen contamination by crucible encapsulation on polycrystalline silicon material quality , 1996 .

[37]  I. Steinbach,et al.  Numerical simulations for silicon crystallization processes—examples from ingot and ribbon casting , 2002 .

[38]  B. Chalmers,et al.  Melt-interface mechanism for generation of silicon carbide microdefects in silicon , 1986 .

[39]  Eicke R. Weber,et al.  Physics of Copper in Silicon , 2002 .

[40]  J. Dismukes,et al.  Influence of acrt on interface stability and particle trapping behavior in directional solidification of silicon , 1985 .

[41]  M. Kittler,et al.  Influence of copper contamination on recombination activity of misfit dislocations in SiGe/Si epilayers: Temperature dependence of activity as a marker characterizing the contamination level , 1995 .

[42]  M. Pickett,et al.  Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current , 2005 .

[43]  S. Pizzini,et al.  On the effect of impurities on the photovoltaic behavior of solar grade silicon - II. Influence of titanium, vanadium, chromium, iron, and zirconium on photovoltaic behavior of polycrystalline solar cells , 1984 .

[44]  G. Rozgonyi,et al.  Low‐temperature gettering of trace iron and copper by misfit dislocations in Si/Si(Ge) epitaxy , 1994 .

[45]  E. Weber,et al.  Gettering of metallic impurities in photovoltaic silicon , 1997 .

[46]  Chi-Tay Tsai On the finite element modeling of dislocation dynamics during semiconductor crystal growth , 1991 .

[47]  D. Uhlmann,et al.  Interaction Between Particles and a Solid‐Liquid Interface , 1964 .

[48]  R. Celestre,et al.  Synchrotron-based impurity mapping , 2000 .

[49]  B. Lai,et al.  Nanometer focusing of hard x rays by phase zone plates , 1999 .

[50]  Mark L. Rivers,et al.  Elemental measurements with an X-ray microprobe of biological and geological samples with femtogram sensitivity , 1988 .

[51]  J. Davis,et al.  Effect of titanium, copper and iron on silicon solar cells , 1980 .

[52]  O. H. Duparc,et al.  Correlation between the gettering efficiencies and the energies of interfaces in silicon bicrystals , 1996 .

[53]  R. A. Sinton,et al.  EVALUATING SILICON BLOCKS AND INGOTS WITH QUASI-STEADY-STATE LIFETIME MEASUREMENTS , 2004 .

[54]  T. Wang,et al.  Silicon defect and impurity studies using float-zone crystal growth as a tool , 2002 .

[55]  T. Ciszek Silicon Crystal Growth for Photovoltaics , 2004 .

[56]  I. Périchaud,et al.  Direct correlation of transition metal impurities and minority carrier recombination in multicrystalline silicon , 1998 .

[57]  D. Macdonald,et al.  Phosphorus gettering in multicrystalline silicon studied by neutron activation analysis , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[58]  T. Ciszek,et al.  Techniques for the crystal growth of silicon ingots and ribbons , 1984 .

[59]  G. Rozgonyi,et al.  Effects of grain boundary on impurity gettering and oxygen precipitation in polycrystalline sheet silicon , 2003 .

[60]  M. Werner,et al.  Shunt types in crystalline silicon solar cells , 2004 .

[61]  L. Kazmerski,et al.  Evidence for the segregation of impurities to grain boundaries in multigrained silicon using Auger electron spectroscopy and secondary ion mass spectroscopy , 1980 .

[62]  G. Hahn,et al.  New crystalline silicon ribbon materials for photovoltaics , 2004 .

[63]  H. Gottschalk Precipitates in Ribbon Grown Solar Silicon , 2000 .

[64]  J. Kalejs,et al.  Segregation and impurity effects in silicon grown from the melt in the presence of second phase formation , 1991 .

[65]  James H. Underwood,et al.  X-ray microprobe using multilayer mirrors , 1988 .

[66]  W. Schröter,et al.  Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior , 2001 .

[67]  M. Kittler,et al.  Estimation of the Upper Limit of the Minority-Carrier Diffusion Length in Multicrystalline Silicon: Limitation of the Action of Gettering and Passivation on Dislocations , 2003 .

[68]  P. Wilshaw,et al.  THE EFFECT OF DIFFERENT TRANSITION METALS ON THE RECOMBINATION EFFICIENCY OF DISLOCATIONS , 1991 .

[69]  B. Lai,et al.  Analysis of copper-rich precipitates in silicon: chemical state, gettering, and impact on multicrystalline silicon solar cell material , 2005 .

[70]  R. Einhaus,et al.  Hydrogen passivation of newly developed EMC-multi-crystalline silicon , 1999 .

[71]  S. Simeonov,et al.  Recombination Current in Abrupt Semiconductor p-n Junctions , 1984, March 16.

[72]  Carleton H. Seager,et al.  Grain Boundaries in Polycrystalline Silicon , 1985 .

[73]  Eicke R. Weber,et al.  Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells , 2005 .

[74]  I. Périchaud,et al.  Multicrystalline silicon prepared by electromagnetic continuous pulling: recent results and comparison to directional solidification material , 2002 .

[75]  N. Abrosimov,et al.  Growth features and local electronic properties of shaped silicon , 1987 .