On Learning Parametric Non-Smooth Continuous Distributions
暂无分享,去创建一个
Alon Orlitsky | Venkatadheeraj Pichapati | Sudeep Kamath | Ehsan Zobeidi | A. Orlitsky | Venkatadheeraj Pichapati | Sudeep Kamath | Ehsan Zobeidi
[1] Liam Paninski. Variational Minimax Estimation of Discrete Distributions under KL Loss , 2004, NIPS.
[2] Alon Orlitsky,et al. On Learning Markov Chains , 2018, NeurIPS.
[3] Ilias Diakonikolas,et al. Sample-Optimal Density Estimation in Nearly-Linear Time , 2015, SODA.
[4] Raphail E. Krichevsky,et al. The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.
[5] L. Birge,et al. On estimating a density using Hellinger distance and some other strange facts , 1986 .
[6] Dietrich Braess,et al. Bernstein polynomials and learning theory , 2004, J. Approx. Theory.
[7] Alon Orlitsky,et al. On Learning Distributions from their Samples , 2015, COLT.
[8] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[9] Alon Orlitsky,et al. Learning Markov distributions: Does estimation trump compression? , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[10] P. Hall. On Kullback-Leibler loss and density estimation , 1987 .
[11] Rocco A. Servedio,et al. Explorer Efficient Density Estimation via Piecewise Polynomial Approximation , 2013 .
[12] J. Hartigan. The maximum likelihood prior , 1998 .
[13] Rocco A. Servedio,et al. Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms , 2014, NIPS.
[14] A. Barron,et al. Information theory and superefficiency , 1998 .
[15] Feng Liang,et al. Improved minimax predictive densities under Kullback-Leibler loss , 2006 .
[16] P. Bickel. Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .