Scalable characterization of localizable entanglement in noisy topological quantum codes

Topological quantum error correcting codes have emerged as leading candidates towards the goal of achieving large-scale fault-tolerant quantum computers. However, quantifying entanglement in these systems of large size in the presence of noise is a challenging task. In this paper, we provide two different prescriptions to characterize noisy stabilizer states, including the surface and the color codes, in terms of localizable entanglement over a subset of qubits. In one approach, we exploit appropriately constructed entanglement witness operators to estimate a witness-based lower bound of localizable entanglement, which is directly accessible in experiments. In the other recipe, we use graph states that are local unitary equivalent to the stabilizer state to determine a computable measurement-based lower bound of localizable entanglement. If used experimentally, this translates to a lower bound of localizable entanglement obtained from single-qubit measurements in specific bases to be performed on the qubits outside the subsystem of interest. Towards computing these lower bounds, we discuss in detail the methodology of obtaining a local unitary equivalent graph state from a stabilizer state, which includes a new and scalable geometric recipe as well as an algebraic method that applies to general stabilizer states of arbitrary size. Moreover, as a crucial step of the latter recipe, we develop a scalable graph-transformation algorithm that creates a link between two specific nodes in a graph using a sequence of local complementation operations. We develop open-source Python packages for these transformations, and illustrate the methodology by applying it to a noisy topological color code, and study how the witness and measurement-based lower bounds of localizable entanglement varies with the distance between the chosen qubits.

[1]  Gabriele De Chiara,et al.  Genuine quantum correlations in quantum many-body systems: a review of recent progress , 2017, Reports on progress in physics. Physical Society.

[2]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[3]  Immanuel Bloch,et al.  Exploring quantum matter with ultracold atoms in optical lattices , 2005 .

[4]  Vlatko Vedral,et al.  Statistical mechanics of the Cluster-Ising model , 2011, 1105.0853.

[5]  J. I. Cirac,et al.  Entanglement flow in multipartite systems , 2005 .

[6]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[7]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[8]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[9]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[10]  A. Holevo,et al.  Quantum channels and their entropic characteristics , 2012, Reports on progress in physics. Physical Society.

[11]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[12]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[13]  Hans Peter Buchler,et al.  Minimal instances for toric code ground states , 2012, 1206.6994.

[14]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[15]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[18]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[19]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[20]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[21]  O. Gühne,et al.  Estimating entanglement measures in experiments. , 2006, Physical review letters.

[22]  M. Kargarian,et al.  Entanglement properties of topological color codes , 2008, 0809.4276.

[23]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[24]  Stein Olav Skrovseth,et al.  Phase transitions and localizable entanglement in cluster-state spin chains with Ising couplings and local fields , 2009, 0905.1480.

[25]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[26]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[27]  Miguel Angel Martin-Delgado,et al.  Twins Percolation for Qubit Losses in Topological Color Codes. , 2018, Physical review letters.

[28]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[29]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[30]  Kai Phillip Schmidt,et al.  Robustness of a perturbed topological phase. , 2010, Physical review letters.

[31]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[32]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[33]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[34]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[35]  Amit Kumar Pal,et al.  Estimating localizable entanglement from witnesses , 2018, New Journal of Physics.

[36]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[37]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[38]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[39]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[40]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[41]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[42]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[43]  Jiannis K. Pachos,et al.  A Short Introduction to Topological Quantum Computation , 2017, 1705.04103.

[44]  Samuel G. Rodriques,et al.  Multipartite quantum entanglement evolution in photosynthetic complexes. , 2012, The Journal of chemical physics.

[45]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[46]  Alioscia Hamma,et al.  Phase diagram and quench dynamics of the cluster-XY spin chain. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[48]  Ujjwal Sen,et al.  Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure , 2015, 1511.03998.

[49]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[50]  Keisuke Fujii,et al.  Quantum Computation with Topological Codes , 2015 .

[51]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[52]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[53]  M. Popp,et al.  Localizable Entanglement , 2004 .

[54]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[55]  Samuel J. Lomonaco,et al.  Quantum information science and its contributions to mathematics : American Mathematical Society Short Course, January 3-4, 2009, Washington, DC , 2010 .

[56]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[57]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[58]  Jiannis K. Pachos,et al.  Focus on topological quantum computation , 2014, 1406.2887.

[59]  Juan Jose Garcia-Ripoll,et al.  Mapping the spatial distribution of entanglement in optical lattices , 2010, 1007.0985.

[60]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[61]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[62]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[63]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[64]  Mohammad Hossein Zarei,et al.  Robustness of topological quantum codes: Ising perturbation , 2015, 1501.07619.

[65]  Claudio Castelnovo,et al.  Topological order in a three-dimensional toric code at finite temperature , 2008, 0804.3591.

[66]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[67]  W. Marsden I and J , 2012 .

[68]  R. F. Werner,et al.  Lower bounds on entanglement measures from incomplete information , 2008, 0802.1734.

[69]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[70]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[71]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[72]  Michele Mosca,et al.  Quantum circuit optimizations for NISQ architectures , 2019, Quantum Science and Technology.

[73]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[74]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[75]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[76]  Amit Jamadagni,et al.  Robustness of topological order in the toric code with open boundaries , 2018, Physical Review B.

[77]  Markus Aspelmeyer,et al.  Optomechanical Bell Test. , 2018, Physical review letters.

[78]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[79]  J. Eisert,et al.  Holography and criticality in matchgate tensor networks , 2017, Science Advances.

[80]  E. Polzik,et al.  Spin squeezed atoms: a macroscopic entangled ensemble created by light , 1999 .

[81]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[82]  J I Cirac,et al.  Diverging entanglement length in gapped quantum spin systems. , 2004, Physical review letters.

[83]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[84]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[85]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[86]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[87]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[88]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[89]  Stefanie Barz,et al.  Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments , 2015 .

[90]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[91]  David P. DiVincenzo,et al.  Entanglement of Assistance , 1998, QCQC.

[92]  Gian Giacomo Guerreschi,et al.  Quantum control and entanglement in a chemical compass. , 2009, Physical review letters.

[93]  Norbert M. Linke,et al.  Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.

[94]  Vladimir E. Korepin,et al.  Localizable entanglement in antiferromagnetic spin chains , 2003 .

[95]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[96]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[97]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[98]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[99]  David Amaro,et al.  Design and experimental performance of local entanglement witness operators , 2020 .

[100]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[101]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[102]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[103]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[104]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[105]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[106]  A. Ibort,et al.  An introduction to the tomographic picture of quantum mechanics , 2009, 0904.4439.

[107]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[108]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[109]  F. Brandão,et al.  Witnessed Entanglement , 2004, quant-ph/0405096.

[110]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[111]  Albert T. Schmitz,et al.  Entanglement spectra of stabilizer codes: A window into gapped quantum phases of matter , 2019, Physical Review B.

[112]  Kai Phillip Schmidt,et al.  Robustness of a topological phase: Topological color code in a parallel magnetic field , 2012, 1211.1687.

[113]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[114]  V. Hubeny,et al.  The AdS/CFT correspondence , 2014, 1501.00007.

[115]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[116]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[117]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[118]  Wayne C. Myrvold,et al.  Bell’s Theorem , 2011 .

[119]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.