Kinetic and thermodynamic properties of soybean grains during the drying process

The aims of this work were to adjust different mathematical models to experimental data describing the drying of the Valiosa cultivar soybean grain, to determine and to evaluate the effective diffusion coefficient and to obtain the activation energy and the thermodynamic properties of the drying process under different air conditions. The experiments were conducted at the Federal Institute of Education, Science and Technology of Goias (Instituto Federal de Educacao, Ciencia e Tecnologia Goiano – Câmpus Rio Verde). The Valiosa cultivar soybean grains, with an initial moisture content on a dry basis of 0.56 (d.b., decimal), were dried in an oven with forced air ventilation at five different temperatures (40, 55, 70, 85 and 100°C) until reaching a moisture content of 0.133±0.019 (d.b.). Of the models analyzed, Page’s model was selected to best represent the drying phenomenon. The effective diffusion coefficient of soybeans increased with the air temperature and was described by the Arrhenius equation; an activation energy of 22.77 kJ mol–1 was reported for liquid diffusion in the drying of the soybeans. The enthalpy and entropy decreased with increasing temperature, while the Gibbs free energy increased with increasing drying temperature.

[1]  N. Mohsenin Physical properties of plant and animal materials , 1970 .

[2]  Lílian Moreira Costa,et al.  Cinética de secagem do nabo forrageiro (Raphanus sativus L.) , 2011 .

[3]  Robert H. Driscoll,et al.  The thin-layer drying characteristics of garlic slices , 1996 .

[4]  P. Srinivasa Rao,et al.  A thin layer drying model of parboiled wheat , 2005 .

[5]  Arif Hepbasli,et al.  Mathematical modelling of drying of bay leaves , 2005 .

[6]  F. M. Botelho,et al.  Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.) , 2010 .

[7]  P. C. Côrrea,et al.  Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem , 2010 .

[8]  Z. Maroulis,et al.  Moisture Diffusivity Data Compilation in Foodstuffs , 1996 .

[9]  M. Gely,et al.  Moisture diffusivity in quinoa (Chenopodium quinoa Willd.) seeds: Effect of air temperature and initial moisture content of seeds , 2007 .

[10]  V. Jideani,et al.  Modeling of water absorption of Botswana bambara varieties using Peleg's equation , 2009 .

[11]  Lílian Moreira Costa,et al.  CINÉTICA DE SECAGEM DO FEIJÃO ADZUKI (Vigna angularis) , 2009 .

[12]  P. E. Viollaz,et al.  Comparison of drying kinetics of soybeans in thin layer and fluidized beds , 2007 .

[13]  Y. N. N. Meze'e,et al.  Effect of enthalpy–entropy compensation during sorption of water vapour in tropical woods: The case of Bubinga (Guibourtia Tessmanii J. Léonard; G. Pellegriniana J.L.) , 2008 .

[14]  P. C. Côrrea,et al.  DETERMINAÇÃO DOS PARÂMETROS DE SECAGEM EM CAMADA DELGADA DE SEMENTES DE MILHO DOCE (Zea mays L.) , 2003 .

[15]  O. Resende,et al.  Effective diffusivity of jatropha grains and fruits , 2012 .

[16]  F. M. Botelho,et al.  Water desorption and thermodynamic properties of okra seeds. , 2010 .

[17]  Lílian Moreira Costa,et al.  Coeficiente de difusão efetivo e modelagem matemática da secagem de sementes de crambe , 2011 .

[18]  S. C. Campos,et al.  Mathematical modeling of the drying process of corn ears , 2011 .