The blow-up analysis of an affine Toda system corresponding to superconformal minimal surfaces in S4

[1]  Aleks Jevnikar,et al.  Analytic aspects of the Tzitzéica equation: blow-up analysis and existence results , 2016, 1605.01875.

[2]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[3]  Wei Ding,et al.  Scalar curvatures on $S\sp 2$ , 1987 .

[4]  D. Ye,et al.  The blow up analysis of solutions of the elliptic sinh-Gordon equation , 2007 .

[5]  Takashi Suzuki,et al.  A blowup analysis of the mean field equation for arbitrarily signed vortices , 2006 .

[6]  M. Struwe Nonuniqueness in the plateau problem for surfaces of constant mean curvature , 1986 .

[7]  Yanyan Li Harnack Type Inequality: the Method of Moving Planes , 1999 .

[8]  Juncheng Wei,et al.  Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation , 2009 .

[9]  D. Karmakar,et al.  A priori estimates for D4 and F4 Toda systems , 2020 .

[10]  A. Leznov,et al.  Representation theory and integration of nonlinear spherically symmetric equations to gauge theories , 1980 .

[11]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[12]  J. Bolton,et al.  Some geometrical aspects of the 2-dimensional Toda equations , 1997 .

[13]  A. Pistoia,et al.  Multiple Blow-Up Phenomena for the Sinh-Poisson Equation , 2012, 1210.5719.

[14]  Chiun-Chuan Chen,et al.  Estimate of the conformal scalar curvature equation via the method of moving planes. II , 1998 .

[15]  S. Chang,et al.  Prescribing Gaussian curvature on S2 , 1987 .

[16]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[17]  James Eells,et al.  Harmonic maps from surfaces to complex projective spaces , 1983 .

[18]  Juncheng Wei,et al.  Classification of blowup limits for SU(3) singular Toda systems , 2013, 1303.4167.

[19]  Changshou Lin,et al.  A priori estimates of Toda systems, I: the Lie algebras of $\mathbf{A}_n$, $\mathbf{B}_n$, $\mathbf{C}_n$ and $\mathbf{G}_2$ , 2020 .

[20]  J. Spruck The elliptic Sinh Gordon equation and the construction of toroidal soap bubbles , 1988 .

[21]  J. Coron,et al.  The scalar-curvature problem on the standard three-dimensional sphere , 1991 .

[22]  Gang Tian,et al.  Energy identity for a class of approximate harmonic maps from surfaces , 1995 .

[23]  Wenxiong Chen Scalar curvatures onSn , 1989 .

[24]  Juncheng Wei,et al.  On the Topological degree of the Mean field equation with two parameters , 2016, 1602.03354.

[25]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[26]  G. Jensen,et al.  On conformal minimal immersions ofS2 into ℂPn , 1988 .

[27]  U. Pinkall,et al.  Minimal tori in S4. , 1992 .

[28]  J. Jost,et al.  Analytic aspects of the Toda system: I. A Moser‐Trudinger inequality , 2000, math-ph/0011039.

[29]  S. Chang,et al.  The scalar curvature equation on 2- and 3-spheres , 1993 .

[30]  Self-Dual Chern-Simons Theories , 1994, hep-th/9410065.

[31]  Jean-Michel Coron,et al.  Multiple solutions of H‐systems and Rellich's conjecture , 1984 .

[32]  Holomorphic Curves and Toda Systems. , 1995, solv-int/9506004.

[33]  D. Ye,et al.  Classification and nondegeneracy of SU(n+1) Toda system with singular sources , 2011, 1111.0390.

[34]  A. Malchiodi Topological methods for an elliptic equation with exponential nonlinearities , 2008 .

[35]  M. Georges Tzitzéica,et al.  Sur une nouvelle classe de surfaces , 1908 .

[36]  A. Fordy,et al.  Integrable nonlinear Klein-Gordon equations and Toda lattices , 1980 .

[37]  Juncheng Wei,et al.  Classification of blow-up limits for the sinh-Gordon equation , 2016, Differential and Integral Equations.

[38]  Classification of solutions of a Toda system in ℝ2 , 2001, math-ph/0105045.