Chemical, Electrochemical, and Surface Study on Microbial Attack of CoCrMo Dental Alloy by Streptococcus mutans

[1]  Dawei Zhang,et al.  Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. , 2020, Bioelectrochemistry.

[2]  Min-Ho Lee,et al.  Sucrose challenges to Streptococcus mutans biofilms and the curve fitting for the biofilm changes , 2018, FEMS microbiology ecology.

[3]  Bilin Chen,et al.  In vivo corrosion of CoCrMo alloy and biological responses: a review , 2018 .

[4]  Y. Frank Cheng,et al.  Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria , 2017 .

[5]  Qun Zhong,et al.  Corrosion of dental alloys in artificial saliva with Streptococcus mutans , 2017, PloS one.

[6]  R. Oukhrib,et al.  Sulfate-Reducing Bacteria Impact on Copper Corrosion Behavior in Natural Seawater Environment , 2016 .

[7]  Fuqiang Zhang,et al.  Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression , 2016, Journal of Materials Science: Materials in Medicine.

[8]  M. Vasconcelos,et al.  Orthodontic wires and its corrosion—The specific case of stainless steel and beta-titanium , 2015 .

[9]  A. Lino,et al.  The corrosion resistance of Wiron®88 in the presence of S. mutans and S. sobrinus bacteria , 2015, Journal of Materials Science: Materials in Medicine.

[10]  K. Nakajo,et al.  Microbiologically Induced Corrosive Properties of the Titanium Surface , 2014, Journal of dentistry research.

[11]  L. Lombardo,et al.  Changes in the oral environment after placement of lingual and labial orthodontic appliances , 2013, Progress in orthodontics.

[12]  W. Teughels,et al.  Corrosion behaviour of titanium in the presence of Streptococcus mutans. , 2013, Journal of dentistry.

[13]  Fu-qiang Zhang,et al.  In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins. , 2011, Colloids and surfaces. B, Biointerfaces.

[14]  F. Zaoui,et al.  Behavior of NiTi in the presence of oral bacteria: corrosion by Streptococcus mutans. , 2011, International orthodontics.

[15]  Fu-qiang Zhang,et al.  Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing. , 2011, European journal of oral sciences.

[16]  Theodore Eliades,et al.  Microbiologically-influenced corrosion of orthodontic alloys: a review of proposed mechanisms and effects. , 2009, Australian orthodontic journal.

[17]  I. González,et al.  Influence of Desulfovibrio sp. biofilm on SAE 1018 carbon steel corrosion in synthetic marine medium , 2007 .

[18]  R. Shelton,et al.  Corrosion of nickel-based dental casting alloys. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[19]  A. Sourdot La Corrosion du titane en milieu buccal , 2007 .

[20]  J. Anastassopoulou,et al.  Analytical and electrochemical evaluation of the in vitro corrosion behavior of nickel-chrome and cobalt-chrome casting alloys for metal-ceramic restorations. , 2007, The European journal of prosthodontics and restorative dentistry.

[21]  H. Toma,et al.  Electrochemical and corrosion studies of poly(nickel-tetraaminophthalocyanine) on carbon steel , 2006 .

[22]  A. Eroğlu,et al.  Metal ion release from TiN coated CoCrMo orthopedic implant material , 2006 .

[23]  Li Liu,et al.  [Microbial corrosion of dental alloy]. , 2004, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi.

[24]  Ingrid Milošev,et al.  The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution , 2003 .

[25]  Her-Hsiung Huang Surface characterization of passive film on NiCr-based dental casting alloys. , 2003, Biomaterials.

[26]  R. Burne,et al.  Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. , 2001, Microbiology.

[27]  L. Reclaru,et al.  Comparison of corrosion behaviour in presence of oral bacteria. , 2001, Biomaterials.

[28]  G. Rasperini,et al.  In vivo early plaque formation on pure titanium and ceramic abutments: a comparative microbiological and SEM analysis. , 1998, Clinical oral implants research.

[29]  P. Marsh,et al.  Dental plaque as a biofilm , 1995, Journal of Industrial Microbiology.

[30]  Jack Ferracane,et al.  Materials in Dentistry: Principles and Applications , 1995 .

[31]  A. Scheie Mechanisms of Dental Plaque Formation , 1994, Advances in dental research.

[32]  D. Moreno,et al.  Microbial corrosion of stainless steel. , 1992, Microbiologia.

[33]  J. McCabe,et al.  Applied Dental Materials , 1985 .

[34]  J. Fernandes,et al.  Galvanic Corrosion of Two Non Noble Dental Alloys , 2014, International Journal of Electrochemical Science.

[35]  J. Pan,et al.  Nature of Current Increase for a CoCrMo Alloy: “transpassive” Dissolution vs. Water Oxidation , 2013, International Journal of Electrochemical Science.

[36]  R. Galo,et al.  Effects of chemical composition on the corrosion of dental alloys. , 2012, Brazilian dental journal.

[37]  M F Baslé,et al.  Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. , 2006, Acta biomaterialia.

[38]  Y. Oshida,et al.  Electrochemical study on microbiology-related corrosion of metallic dental materials. , 2003, Bio-medical materials and engineering.