Performance limits of RF power CMOS
暂无分享,去创建一个
[1] David R. Vizard,et al. Millimeter-wave applications : From satellite communications to security systems , 2006 .
[2] Seonghearn Lee. Direct extraction of small-signal model parameters for nanoscale MOSFETs , 2004, International Meeting for Future of Electron Devices, 2004..
[3] Zuo-Min Tsai,et al. A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology , 2009, IEEE Microwave and Wireless Components Letters.
[4] Duixian Liu,et al. Advanced millimeter-wave technologies : antennas, packaging and circuits , 2009 .
[5] Hiroshi Kondoh,et al. 60GHz and 80GHz wide band power amplifier MMICs in 90nm CMOS technology , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.
[6] Steven Thijs,et al. 50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[7] Hyungcheol Shin,et al. A simple and analytical parameter-extraction method of a microwave MOSFET , 2002 .
[8] M. Sherony,et al. 65nm cmos technology for low power applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[9] K. F. Lee,et al. Impact of distributed gate resistance on the performance of MOS devices , 1994 .
[10] Anh-Vu Pham,et al. A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).
[11] M.-C.F. Chang,et al. 60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.
[12] J. Scholvin,et al. Performance and limitations of 65 nm CMOS for integrated RF power applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[13] Jing Wang,et al. Effect of Substrate Contact Shape and Placement on RF Characteristics of 45 nm Low Power CMOS Devices , 2009, IEEE Journal of Solid-State Circuits.
[14] J.A. del Alamo,et al. RF power potential of 45 nm CMOS technology , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).
[15] Ali M. Niknejad,et al. Design considerations for 60 GHz CMOS radios , 2004, IEEE Communications Magazine.
[16] H.S. Bennett,et al. Device and technology evolution for Si-based RF integrated circuits , 2005, IEEE Transactions on Electron Devices.
[17] G. Dambrine,et al. A new method for determining the FET small-signal equivalent circuit , 1988 .
[18] T.J. Yeh,et al. Broadband small-signal model and parameter extraction for deep sub-micron MOSFETs valid up to 110 GHz , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.
[19] John L. B. Walker,et al. High-Power GaAs FET Amplifiers , 1993 .
[20] C. Kim,et al. A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs , 2001 .
[21] K. Maruhashi,et al. 60-GHz-Band CMOS MMIC Technology for High-Speed Wireless Personal Area Networks , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.
[22] P. Tasker,et al. Importance of source and drain resistance to the maximum f/sub T/ of millimeter-wave MODFETs , 1989, IEEE Electron Device Letters.
[23] Baudouin Martineau,et al. A 60 GHz Power Amplifier With 14.5 dBm Saturation Power and 25% Peak PAE in CMOS 65 nm SOI , 2010, IEEE Journal of Solid-State Circuits.
[24] N. Camilleri,et al. Extracting small-signal model parameters of silicon MOSFET transistors , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).
[25] H. Zirath,et al. 90-nm CMOS for microwave power applications , 2003, IEEE Microwave and Wireless Components Letters.
[26] Ali M. Niknejad,et al. A 60GHz 1V + 12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[27] P Sen,et al. The Next Wireless Wave is a Millimeter Wave , 2022 .
[28] K. Kang,et al. A 60 GHz transformer-based variable-gain power amplifier in 90nm CMOS , 2009, 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).
[29] R. Torres-Torres,et al. Straightforward determination of small-signal model parameters for bulk RF-MOSFETs , 2004, Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, 2004..
[30] T. Quemerais,et al. A CMOS class-A 65nm power amplifier for 60 GHz applications , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).
[31] D. Greenberg,et al. Modeling frequency response of 65 nm CMOS RF power devices , 2010 .
[32] J.A.M. Geelen,et al. An improved de-embedding technique for on-wafer high-frequency characterization , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.
[33] D. Belot,et al. Design for millimeter-wave applications in silicon technologies , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.
[34] J. Scholvin,et al. Fundamental Power and Frequency Limits of Deeply-Scaled CMOS for RF Power Applications , 2006, 2006 International Electron Devices Meeting.
[35] B. Parvais,et al. Deep Submicron CMOS for Millimeter Wave Power Applications , 2008, IEEE Microwave and Wireless Components Letters.
[36] Herbert Zirath,et al. A Compact Cascode Power Amplifier in 45-nm CMOS for 60-GHz Wireless Systems , 2009, 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium.
[37] Ali M. Niknejad,et al. mm-Wave Silicon Technology: 60 GHz and Beyond , 2008 .
[38] T. Hook,et al. A 45nm Low Cost Low Power Platform by Using Integrated Dual-Stress-Liner Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..
[39] M. Hamada,et al. A 60-GHz CMOS power amplifier with Marchand balun-based parallel power combiner , 2008, 2008 IEEE Asian Solid-State Circuits Conference.
[40] M. Tutt,et al. Wideband PA and LAN for 60-GHz Radio in 90-nm LP CMOS Technology , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.
[41] M. Weybright,et al. High performance and low power transistors integrated in 65nm bulk CMOS technology , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..
[42] S. Reynolds,et al. 60 GHz transmitter circuits in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.
[43] Bevin Perumana,et al. 60GHz CMOS power amplifier with 20-dB-gain and 12dBm Psat , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.
[44] A. Niknejad. Siliconization of 60 GHz , 2010, IEEE Microwave Magazine.
[45] W. L. Chan,et al. A 60GHz-band 1V 11.5dBm power amplifier with 11% PAE in 65nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[46] Marian K. Kazimierczuk. RF power amplifiers , 2008 .
[47] Shmuel Ravid,et al. 60GHz 45nm PA for linear OFDM signal with predistortion correction achieving 6.1% PAE and −28dB EVM , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.
[48] R. Wachnik,et al. RF Modeling of 45nm Low-Power CMOS Technology , 2009 .
[49] M.J. Deen,et al. MOSFET modeling for RF IC design , 2005, IEEE Transactions on Electron Devices.
[50] Herbert Zirath,et al. A broadband differential cascode power amplifier in 45 nm CMOS for high-speed 60 GHz system-on-chip , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.
[51] J. Scholvin,et al. RF power potential of 90 nm CMOS: device options, performance, and reliability , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..
[52] Ali M. Niknejad,et al. Current combining 60GHz CMOS power amplifiers , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.