Modeling hydrodynamic instabilities in inertial confinement fusion targets
暂无分享,去创建一个
S. Skupsky | P. W. McKenty | Robert L. McCrory | Riccardo Betti | Valeri N. Goncharov | R. Betti | V. Goncharov | R. Mccrory | P. McKenty | S. Skupsky | C. Cherfils-Clerouin | C. Cherfils-Clérouin | C. Cherfils-Clérouin
[1] J. Delettrez,et al. THE ROLE OF THE RAYLEIGH-TAYLOR INSTABILITY IN LASER-DRIVEN BURNTHROUGH EXPERIMENTS , 1994 .
[2] Sanz. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. , 1996, Physical review letters.
[3] M. Busquet. Radiation-dependent ionization model for laser-created plasmas , 1993 .
[4] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[5] J. Watteau. La fusion thermonucléaire inertielle par laser , 1994 .
[6] R. Betti,et al. Self‐consistent stability analysis of ablation fronts with large Froude numbers , 1996 .
[7] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[8] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[9] V. Goncharov. Theory of the Ablative Richtmyer-Meshkov Instability , 1999 .
[10] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability , 1961 .
[11] J. Dahlburg,et al. Radiating plasma structures in ablating, laser-produced plasmas , 1995 .
[12] M. Key,et al. Simulations of laser imprint for Nova experiments and for ignition capsules. Revision 1 , 1996 .
[13] Adam T. Drobot,et al. Computer Applications in Plasma Science and Engineering , 2011, Springer New York.
[14] Robert L. McCrory,et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .
[15] Nelson M. Hoffman,et al. The feedout process: Rayleigh–Taylor and Richtmyer–Meshkov instabilities in uniform, radiation-driven foils , 1999 .
[16] M. S. Plesset,et al. On the Stability of Fluid Flows with Spherical Symmetry , 1954 .
[17] Robert L. McCrory,et al. FEEDOUT AND RAYLEIGH-TAYLOR SEEDING INDUCED BY LONG WAVELENGTH PERTURBATIONS IN ACCELERATED PLANAR FOILS , 1998 .
[18] S. Laffite,et al. Numerical analysis of spherically convergent Rayleigh-Taylor experiments on the Nova laser , 1999 .
[19] R. Betti,et al. Rayleigh–Taylor instability analysis of targets with a low-density ablation layer , 1999 .
[20] A. R. Piriz,et al. Rayleigh-Taylor instability of steady ablation fronts: The discontinuity model revisited , 1997 .
[21] D. Book,et al. Variation in the amplitude of perturbations on the inner surface of an imploding shell during the coasting phase. Memorandum report, September 1985-June 1986 , 1986 .
[22] Haan. Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. , 1989, Physical review. A, General physics.
[23] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[24] K. Nishihara,et al. PROPAGATION OF A RIPPLED SHOCK WAVE DRIVEN BY NONUNIFORM LASER ABLATION , 1997 .
[25] O. L. Landen,et al. Ablation Front Rayleigh- Taylor Growth Experiments in Spherically Convergent Geometry , 2000 .
[26] Kunioki Mima,et al. Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .
[27] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[28] Stephen E. Bodner,et al. Rayleigh-Taylor Instability and Laser-Pellet Fusion , 1974 .
[29] Weber,et al. Three-dimensional single mode Rayleigh-Taylor experiments on nova. , 1995, Physical review letters.
[30] P. Lovoi,et al. Laser paint stripping offers control and flexibility , 1994 .
[31] M. Liberman,et al. Stabilization of the Rayleigh–Taylor instability by convection in smooth density gradient: Wentzel–Kramers–Brillouin analysis , 1992 .
[32] Stephen Wolfram,et al. The Mathematica book (3rd ed.) , 1996 .
[33] Denis G. Colombant,et al. Direct-drive laser fusion: status and prospects , 1998 .