Energy transfer in lanthanide upconversion studies for extended optical applications.

Lanthanide pairs, which can upconvert low energy photons into higher energy photons, are promising for efficient upconversion emission. A typical system with Yb(3+) as a sensitizer can convert short NIR into visible/ultraviolet light via energy transfer between lanthanide ions. Such upconverting nanocrystals doped with lanthanide ions have found significant potential in bioimaging, photochemical reactions and energy conversion. This review presents a fundamental understanding of energy transfer in lanthanide-supported photon upconversion. We introduce the emerging progress in excitation selection based on the energy transfer within lanthanide ions or activation from antennae, with an outlook in the development and applications of the lanthanide upconversion emissions.

[1]  Qichun Zhang,et al.  Lanthanide-doped Na(x)ScF(3+x) nanocrystals: crystal structure evolution and multicolor tuning. , 2012, Journal of the American Chemical Society.

[2]  N. Menyuk,et al.  NaYF4 : Yb,Er—an efficient upconversion phosphor , 1972 .

[3]  Marc Vendrell,et al.  Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. , 2011, Journal of the American Chemical Society.

[4]  Yong Zhang,et al.  Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Chunhua Yan,et al.  Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors. , 2009, Dalton transactions.

[6]  D. Pecile,et al.  Comparison and efficiency of materials for summation of photons assisted by energy transfer , 1973 .

[7]  Tao Jiang,et al.  Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd(3+)-Yb(3+)-Tm(3+) ions. , 2012, Journal of colloid and interface science.

[8]  Qing Peng,et al.  Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. , 2011, Accounts of chemical research.

[9]  Judith Grimm,et al.  Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+ , 2005 .

[10]  H. Güdel,et al.  Er, Yb Doped Yttrium Based Nanosized Phosphors: Particle Size, “Host Lattice” and Doping Ion Concentration Effects on Upconversion Efficiency , 2006, Journal of Fluorescence.

[11]  Anping Yang,et al.  Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. , 2012, Chemical communications.

[12]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[13]  Yan Zhang,et al.  Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. , 2012, Chemical communications.

[14]  Q. Zhang,et al.  Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. , 2012, Analytical chemistry.

[15]  Yongsheng Liu,et al.  A Strategy to Achieve Efficient Dual‐Mode Luminescence of Eu3+ in Lanthanides Doped Multifunctional NaGdF4 Nanocrystals , 2010, Advanced materials.

[16]  A. Bettencourt‐Dias,et al.  Lanthanide-based emitting materials in light-emitting diodes , 2007 .

[17]  Muthu Kumara Gnanasammandhan,et al.  Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging. , 2012, Nanoscale.

[18]  Wieslaw Strek,et al.  Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions , 2000 .

[19]  Xueru Zhang,et al.  The Effect of Li on the Spectrum of Er3+ in Li- and Er-Codoped ZnO Nanocrystals , 2008 .

[20]  Hans H Gorris,et al.  Tuning the Dual Emission of Photon‐Upconverting Nanoparticles for Ratiometric Multiplexed Encoding , 2011, Advanced materials.

[21]  Zhipeng Li,et al.  Selective enhancement of green upconversion emissions of Er3+:Yb3Al5O12 nanocrystals by high excited state energy transfer with Yb3+–Mn2+ dimer sensitizing , 2012 .

[22]  Wei Feng,et al.  A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. , 2013, Journal of the American Chemical Society.

[23]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[24]  F. Shi,et al.  Sub-10 nm and monodisperse β-NaYF4:Yb,Tm,Gd nanocrystals with intense ultraviolet upconversion luminescence , 2014 .

[25]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[26]  Zhizhan Xu,et al.  Multiphoton-excited upconversion luminescence of Nd:YVO(4). , 2007, Optics express.

[27]  Hong Zhang,et al.  Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level. , 2008, The journal of physical chemistry. B.

[28]  John-Christopher Boyer,et al.  Remote-control photoswitching using NIR light. , 2009, Journal of the American Chemical Society.

[29]  Paras N. Prasad,et al.  Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm. , 2011, ACS nano.

[30]  Wei Zheng,et al.  Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. , 2013, Angewandte Chemie.

[31]  Hai Zhu,et al.  Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. , 2013, Angewandte Chemie.

[32]  Jean-Claude G. Bünzli,et al.  New Opportunities for Lanthanide Luminescence , 2007 .

[33]  Liang Yan,et al.  Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications , 2013, Advanced materials.

[34]  Paras N. Prasad,et al.  (α-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. , 2012, ACS nano.

[35]  Christopher McRae,et al.  Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. , 2013, Nanoscale.

[36]  Xiaohong Yan,et al.  Thermal loading induced near-infrared broadband upconversion emission of Sm3+-doped β-NaYbF4 nano-phosphors , 2011 .

[37]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[38]  P. B. Wyatt,et al.  Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers , 2010, Advanced materials.

[39]  G. Chow,et al.  Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence , 2005 .

[40]  D. Zhao,et al.  Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges , 2013 .

[41]  J. Boyer,et al.  Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. , 2010, Angewandte Chemie.

[42]  Lanlan Zhong,et al.  Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces , 2011 .

[43]  Yu Huang,et al.  Plasmonic modulation of the upconversion fluorescence in NaYF4 :Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. , 2010, Angewandte Chemie.

[44]  Rolindes Balda,et al.  Infrared-to-visible upconversion processes inPr3+/Yb3+-codopedKPb2Cl5 , 2003 .

[45]  N. Bloembergen,et al.  Solid State Infrared Quantum Counters , 1959 .

[46]  Qingfeng Xiao,et al.  Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. , 2014, ACS nano.

[47]  Tero Soukka,et al.  Photochemical Characterization of Up-Converting Inorganic Lanthanide Phosphors as Potential Labels , 2005, Journal of Fluorescence.

[48]  Chuanbin Mao,et al.  NIR-responsive silica-coated NaYbF(4):Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[49]  W. Xu,et al.  Upconversion white-light emission in Ho3+/Yb3+/Tm3+ tridoped LiNbO3 single crystal. , 2012, Optics letters.

[50]  Ralph H. Page,et al.  Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium , 1997 .

[51]  Shanshan Huang,et al.  Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals , 2011 .

[52]  Chun-Hua Yan,et al.  Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. , 2014, Journal of the American Chemical Society.

[53]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[54]  Yong Zhang,et al.  Bacterial imaging with photostable upconversion fluorescent nanoparticles. , 2014, Biomaterials.

[55]  V. K. Rai,et al.  NIR to visible frequency upconversion in Er3+ and Yb3+ codoped ZrO2 phosphor , 2013 .

[56]  Bin Dong,et al.  Structure and upconversion luminescence properties of Er3 +–Mo6 + codoped Yb2Ti2O7 films , 2014 .

[57]  Yong Zhang,et al.  Small upconverting fluorescent nanoparticles for biomedical applications. , 2010, Small.

[58]  J. Hao,et al.  Color-tunable upconversion luminescence of Yb3+, Er3+, and Tm3+ tri-doped ferroelectric BaTiO3 materials , 2013 .

[59]  F. V. van Veggel,et al.  Hard proof of the NaYF(4)/NaGdF(4) nanocrystal core/shell structure. , 2009, Journal of the American Chemical Society.

[60]  Mingming Xing,et al.  Synthesis and upconversion luminescence properties of monodisperse Y2O3:Yb, Ho spherical particles , 2011 .

[61]  Chunhua Yan,et al.  Luminescence resonance energy transfer based on β-NaYF4:Yb,Er nanoparticles and TRITC dye , 2009 .

[62]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[63]  Ling-Dong Sun,et al.  Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. , 2013, ACS nano.

[64]  Wei Fan,et al.  Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri‐doped Upconversion Colloidal Nanoparticles at 800 nm , 2013 .

[65]  Guo Gao,et al.  Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. , 2013, Nanoscale.

[66]  Ru‐Shi Liu,et al.  The effect of surface coating on energy migration-mediated upconversion. , 2012, Journal of the American Chemical Society.

[67]  C. Geraldes,et al.  (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging. , 2012, Nanoscale.

[68]  Yun Sun,et al.  Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. , 2013, ACS nano.

[69]  Prakash Chandra,et al.  Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. , 2013, Nanoscale.

[70]  J. W. Ding,et al.  Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+, Er3+ by co-doping with Li+ or Bi3+ , 2012, Applied Physics B.

[71]  Zhiguo Zhang,et al.  Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions , 2009 .

[72]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[73]  A. Speghini,et al.  Colloidal Tm3+/Yb3+‐Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low‐Energy Excitation , 2009 .

[74]  Ya-Wen Zhang,et al.  Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals , 2007 .

[75]  Tian Ming,et al.  Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement , 2012 .

[76]  Zhiqiang Gao,et al.  Strong Red-Emitting near-Infrared-to-Visible Upconversion Fluorescent Nanoparticles , 2011 .

[77]  Yangyang He,et al.  Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐Earth Oxides , 2012, Advanced materials.

[78]  G. Qin,et al.  Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98−xYbxF4 nanocrystals with enhanced upconversion luminescence , 2014 .

[79]  Lili Wang,et al.  Enhanced red upconversion luminescence in Er-Tm codoped NaYF4 phosphor. , 2011, Journal of nanoscience and nanotechnology.

[80]  Liang Yan,et al.  Mn2+ Dopant‐Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery , 2012, Advanced materials.

[81]  Fu-ping Wang,et al.  Upconversion emission enhancement in Er3+/Yb3+-codoped BaTiO3 nanocrystals by tridoping with Li+ ions , 2011 .

[82]  Yong Zhang,et al.  Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers , 2012, Proceedings of the National Academy of Sciences.

[83]  Chunhua Yan,et al.  Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. , 2012, Nanoscale.

[84]  Yadong Li,et al.  Monodispersed Nanocrystalline Fluoroperovskite Up-Conversion Phosphors , 2007 .

[85]  Venkataramanan Mahalingam,et al.  Strong stokes and upconversion luminescence from ultrasmall Ln(3+)-doped BiF3 (Ln=Eu3+, Yb3+/Er3+) nanoparticles confined in a polymer matrix. , 2014, Chemistry, an Asian journal.

[86]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[87]  Jianfang Wang,et al.  Plasmon–molecule interactions , 2010 .

[88]  Chao Wang,et al.  Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. , 2011, Angewandte Chemie.

[89]  M. Yoshimura,et al.  Size-dependent upconversion luminescence and quenching mechanism of LiYF 4 : Er 3+ /Yb 3+ nanocrystals with oleate ligand adsorbed , 2013 .

[90]  Yadong Li,et al.  Luminescence tuning of upconversion nanocrystals. , 2010, Chemistry.

[91]  F. V. Veggel,et al.  Analysis of the Shell Thickness Distribution on NaYF4/NaGdF4 Core/Shell Nanocrystals by EELS and EDS , 2011 .

[92]  Guanying Chen,et al.  Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions , 2008 .

[93]  Eiichiro Nakazawa,et al.  Cooperative Luminescence in YbPO 4 , 1970 .

[94]  Meng-Yin Xie,et al.  Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence , 2009 .

[95]  Wei Xu,et al.  Influence of temperature on upconversion multicolor luminescence in Ho3+/Yb3+/Tm(3+)-doped LiNbO3 single crystal. , 2013, Optics letters.

[96]  Cunhai Dong,et al.  Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. , 2012, Journal of the American Chemical Society.

[97]  Jie Shen,et al.  Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4 :Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. , 2013, Small.

[98]  Qing Peng,et al.  Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. , 2005, Angewandte Chemie.

[99]  C. Hazra,et al.  Sub‐5 nm Ln3+‐doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET) , 2013, Advanced materials.

[100]  Marco Bettinelli,et al.  Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals , 2004 .

[101]  Shufen Zhang,et al.  Upconversion photoluminescence enhancement and modulation of NaYF4:Yb, Er through using different ligands , 2013 .

[102]  Xueru Zhang,et al.  Enhancement of the upconversion photoluminescence intensity in Li+ and Er3+ codoped Y2O3 nanocrystals , 2008 .

[103]  F. Auzel Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up‐Conversion , 1975 .

[104]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .

[105]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[106]  P. Schuck,et al.  Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals. , 2012, The journal of physical chemistry. B.

[107]  H. Güdel,et al.  Anomalous power dependence of sensitized upconversion luminescence , 2005 .

[108]  Shufen Zhang,et al.  A facile and general approach for the multicolor tuning of lanthanide-ion doped NaYF4 upconversion nanoparticles within a fixed composition , 2010 .

[109]  T. Nann,et al.  Monodisperse upconverting nanocrystals by microwave-assisted synthesis. , 2009, ACS nano.

[110]  F. Vetrone,et al.  Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration , 2013 .

[111]  V. K. Rai,et al.  Infrared, visible and upconversion emission of CaAl12O19 powders doped with Er3+, Yb3+ and Mg2+ ions , 2012 .

[112]  Qiang Sun,et al.  Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. , 2013, Journal of the American Chemical Society.

[113]  Jay S. Chivian,et al.  The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters , 1979 .

[114]  M. Chamarro,et al.  ENERGY UP-CONVERSION IN (Yb, Ho) AND (Yb, Tm) DOPED FLUOROHAFNATE GLASSES , 1988 .

[115]  Qingming Huang,et al.  Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time , 2013 .

[116]  J. Dawes,et al.  Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. , 2013, Nature nanotechnology.

[117]  Chun-Hua Yan,et al.  Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. , 2014, Accounts of chemical research.

[118]  A. Speghini,et al.  Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship , 2008 .

[119]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[120]  Yujie Xiong,et al.  Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions , 2011 .

[121]  Hong Zhang,et al.  Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence , 2009 .

[122]  K. Samatha,et al.  UV–visible upconversion studies of Nd3+ ions in lead tellurite glass , 2013 .

[123]  Fu-ping Wang,et al.  Upconversion emission enhancement in silica-coated Gd2O3:Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion , 2010 .

[124]  Lili Wang,et al.  Tunable upconversion emission in Ba2YF7:Yb3+/Er3+ nanocrystals with different Yb3+ concentration , 2013 .

[125]  Dan Wang,et al.  Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. , 2011, ACS nano.

[126]  Yanlei Yu,et al.  NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. , 2011, Journal of the American Chemical Society.

[127]  Qingqing Dou,et al.  Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. , 2013, Biomaterials.

[128]  B. Fei,et al.  Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn2+ Doping , 2014 .

[129]  Ning Liu,et al.  Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. , 2011, Chemical communications.

[130]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[131]  Lina Zhao,et al.  Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. , 2014, Physical chemistry chemical physics : PCCP.

[132]  W. Stręk,et al.  The impact of shell host (NaYF₄/CaF₂) and shell deposition methods on the up-conversion enhancement in Tb³⁺, Yb³⁺ codoped colloidal α-NaYF₄ core-shell nanoparticles. , 2014, Nanoscale.

[133]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[134]  A. Speghini,et al.  Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+−Yb3+ and Eu3+−Yb3+ , 2009 .

[135]  Helmut Schäfer,et al.  Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4 , 2008 .

[136]  Xiaogang Liu,et al.  Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. , 2014, Accounts of chemical research.

[137]  Zhiguo Zhang,et al.  Upconversion Emission Enhancement in Yb3+/Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions , 2008 .

[138]  Wei Feng,et al.  Upconversion‐Nanophosphor‐Based Functional Nanocomposites , 2013, Advanced materials.

[139]  Geoffrey A Ozin,et al.  Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. , 2011, Nano letters.

[140]  Jie Shen,et al.  Rare-Earth nanoparticles with enhanced upconversion emission and suppressed rare-Earth-ion leakage. , 2012, Chemistry.

[141]  W. Stręk,et al.  Energy up-conversion in Tb3+/Yb3+ co-doped colloidal α-NaYF4 nanocrystals , 2013 .

[142]  Jianhua Hao,et al.  Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. , 2011, Angewandte Chemie.

[143]  Chun-Hua Yan,et al.  Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. , 2011, Biomaterials.

[144]  H. Ågren,et al.  Intense ultraviolet upconversion emission from water-dispersed colloidal YF3:Yb3+/Tm3+ rhombic nanodisks. , 2014, Nanoscale.

[145]  K. Krämer,et al.  Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion , 2005 .

[146]  L. Liao,et al.  Comparative Investigation of Green and Red Upconversion Luminescence in Er3+ Doped and Yb3+/Er3+ Codoped LaOCl , 2012 .

[147]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[148]  Fuyou Li,et al.  Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. , 2008, Journal of the American Chemical Society.

[149]  D. Gamelin,et al.  Two-Photon Spectroscopy of d3 Transition Metals: Near-IR-to-Visible Upconversion Luminescence by Re4+ and Mo3+ , 1998 .

[150]  Yadong Li,et al.  Upconversion luminescence of monodisperse CaF2:Yb(3+)/Er(3+) nanocrystals. , 2009, Journal of the American Chemical Society.

[151]  Zhiguo Zhang,et al.  Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions , 2009, Nanotechnology.

[152]  Wei Feng,et al.  Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. , 2012, Biomaterials.

[153]  M. Baroughi,et al.  Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays , 2014 .

[154]  Takenobu Suzuki,et al.  Upconversion properties of Tb3+―Yb3+ codoped fluorophosphate glasses , 2009 .

[155]  Zhengwen Yang,et al.  Energy transfer and upconversion emission of Tm3 +/Tb3 +/Yb3 + co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals , 2013 .

[156]  Chunhua Yan,et al.  Luminescent rare earth nanomaterials for bioprobe applications. , 2008, Dalton transactions.

[157]  Meng Wang,et al.  Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles. , 2009, ACS nano.

[158]  P. Prasad,et al.  Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics , 2014, Chemical reviews.

[159]  Chunhua Yan,et al.  Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors , 2010 .

[160]  Xueru Zhang,et al.  Enhance upconversion photoluminescence intensity by doping Li+ in Ho3+ and Yb3+ codoped Y2O3 nanocrystals , 2009 .

[161]  Dayong Jin,et al.  Multicolor barcoding in a single upconversion crystal. , 2014, Journal of the American Chemical Society.

[162]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[163]  Lei Zhou,et al.  Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm , 2013, Scientific Reports.

[164]  Lili Wang,et al.  Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. , 2013, Nanoscale.

[165]  Zhuang Liu,et al.  Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer , 2011 .

[166]  Chunhua Yan,et al.  Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. , 2010, Nanoscale.

[167]  Ping Huang,et al.  Lanthanide-doped LiLuF(4) upconversion nanoprobes for the detection of disease biomarkers. , 2014, Angewandte Chemie.

[168]  Christopher B. Murray,et al.  Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. , 2012, ACS nano.

[169]  Jun Lin,et al.  Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. , 2014, Chemical reviews.

[170]  S. Rai,et al.  Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass , 2009 .

[171]  Chun-Hua Yan,et al.  Clean and Flexible Modification Strategy for Carboxyl/Aldehyde‐Functionalized Upconversion Nanoparticles and Their Optical Applications , 2009 .

[172]  Chunhua Yan,et al.  Basic understanding of the lanthanide related upconversion emissions. , 2013, Nanoscale.

[173]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[174]  Peng Zhang,et al.  Enhancing multiphoton upconversion through energy clustering at sublattice level. , 2014, Nature materials.

[175]  Jiaqiang Xu,et al.  Multi-photon upconversion luminescence from a CaxYF3+2x host by doping with Yb3+/Er3+ or Yb3+/Tm3+ , 2013 .

[176]  Chunhua Yan,et al.  Single-crystalline and near-monodispersed NaMF3 (M = Mn, Co, Ni, Mg) and LiMAlF6 (M = Ca, Sr) nanocrystals from cothermolysis of multiple trifluoroacetates in solution. , 2007, Chemistry, an Asian journal.

[177]  L. A. Bueno,et al.  White light generation by frequency upconversion in Tm3+∕Ho3+∕Yb3+-codoped fluorolead germanate glass , 2007 .

[178]  Lili Wang,et al.  Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation , 2010 .

[179]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[180]  Yong Wang,et al.  Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning , 2010 .

[181]  Zhan Shi,et al.  Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. , 2011, Chemical communications.

[182]  Chao Zhang,et al.  Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout , 2010, Advanced materials.

[183]  K. Pan,et al.  Controlled synthesis and tunable upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystals by Pb2+ tridoping , 2013 .

[184]  Jun Lin,et al.  In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. , 2013, Journal of the American Chemical Society.

[185]  Bartosz A Grzybowski,et al.  Writing self-erasing images using metastable nanoparticle "inks". , 2009, Angewandte Chemie.

[186]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[187]  Nora Khanarian,et al.  In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. , 2006, Nano letters.

[188]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[189]  Chun-Hua Yan,et al.  Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. , 2009, Chemical communications.

[190]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[191]  H. Güdel,et al.  Chemical Modification of Transition Metal Upconversion Properties: Exchange Enhancement of Ni2+ Upconversion Rates in Ni2+:RbMnCl3 , 2000 .

[192]  Sunil Kumar Singh,et al.  Frequency upconversion in Er3+ doped Y2O3 nanophosphor:Yb3+ sensitization and tailoring effect of Li+ ion , 2013 .

[193]  R. Sam Niedbala,et al.  Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.

[194]  Hongwei Song,et al.  Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects , 2007 .

[195]  A. Speghini,et al.  Enhancement of Red Emission (4F9/2 → 4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+ , 2002 .

[196]  Wei Li,et al.  Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. , 2012, Nano letters.

[197]  Cherie R. Kagan,et al.  Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. , 2013, ACS nano.

[198]  I. Smalyukh,et al.  Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. , 2014, Nano letters.

[199]  Yuliang Zhao,et al.  Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching‐Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+‐Sensitized Nanoparticles , 2014, Advanced materials.

[200]  Yanqing Hua,et al.  A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. , 2013, Journal of the American Chemical Society.

[201]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[202]  Xiabin Jing,et al.  Rational Design of Multifunctional Upconversion Nanocrystals/Polymer Nanocomposites for Cisplatin (IV) Delivery and Biomedical Imaging , 2013, Advanced materials.

[203]  Muthu Kumara Gnanasammandhan,et al.  In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers , 2012, Nature Medicine.

[204]  Guanying Chen,et al.  Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. , 2010, ACS nano.

[205]  Zhuang Liu,et al.  Upconversion nanophosphors for small-animal imaging. , 2012, Chemical Society reviews.

[206]  X. Duan,et al.  Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. , 2011, Chemical communications.

[207]  M. Haase,et al.  Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. , 2003, Angewandte Chemie.

[208]  Lina Zhao,et al.  Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. , 2012, Chemistry.

[209]  Ququan Wang,et al.  Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. , 2008, Journal of the American Chemical Society.

[210]  Gang Han,et al.  Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. , 2012, Nano letters.

[211]  Zhe Wang,et al.  Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. , 2011, Chemical communications.

[212]  Paras N. Prasad,et al.  Upconversion: Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (α‐NaYF4:Yb,Tm)/CaF2 Core/Shell Nanoparticles for In situ Real‐time Recorded Biocompatible Photoactivation (Small 19/2013) , 2013 .

[213]  J. Paul Robinson,et al.  Tunable lifetime multiplexing using luminescent nanocrystals , 2013, Nature Photonics.

[214]  B. Wall,et al.  Rare-earth-doped biological composites as in vivo shortwave infrared reporters , 2013, Nature Communications.

[215]  Yong Zhang,et al.  Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging , 2012 .

[216]  D. Gamelin,et al.  Spectroscopy and Dynamics of Re(4+) Near-IR-to-Visible Luminescence Upconversion. , 1999, Inorganic chemistry.