A Spanner for the Day After

We show how to construct $(1+\varepsilon)$-spanner over a set $P$ of $n$ points in $\mathbb{R}^d$ that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $\vartheta,\varepsilon \in (0,1)$, the computed spanner $G$ has $ O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) $ edges, where $c= O(d)$. Furthermore, for any $k$, and any deleted set $B \subseteq P$ of $k$ points, the residual graph $G \setminus B$ is $(1+\varepsilon)$-spanner for all the points of $P$ except for $(1+\vartheta)k$ of them. No previous constructions, beyond the trivial clique with $O(n^2)$ edges, were known such that only a tiny additional fraction (i.e., $\vartheta$) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[3]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[4]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[5]  Michiel H. M. Smid,et al.  Robust geometric spanners , 2012, SoCG '13.

[6]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[7]  Timothy M. Chan,et al.  On Locality-Sensitive Orderings and their Applications , 2019, ITCS.

[8]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[9]  Prosenjit Bose,et al.  Near-Optimal O(k)-Robust Geometric Spanners , 2018, ArXiv.

[10]  Dan E. Willard,et al.  Maintaining dense sequential files in a dynamic environment (Extended Abstract) , 1982, STOC '82.

[11]  Sariel Har-Peled,et al.  New constructions of SSPDs and their applications , 2010, Comput. Geom..

[12]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[14]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[16]  Michiel H. M. Smid Geometric spanners with few edges and degree five , 2006, CATS.

[17]  Giri Narasimhan,et al.  Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.

[18]  Noga Alon,et al.  An elementary construction of constant-degree expanders , 2007, SODA '07.

[19]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[20]  K. Buchin,et al.  {O}(k)-robust spanners in one dimension , 2018 .

[21]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[22]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[23]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[24]  Paz Carmi,et al.  Stable roommates and geometric spanners , 2010, CCCG.

[25]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[26]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.

[27]  Joachim Gudmundsson,et al.  Sparse geometric graphs with small dilation , 2008, Comput. Geom..

[28]  Michiel H. M. Smid,et al.  On the power of the semi-separated pair decomposition , 2009, Comput. Geom..