Tracing the warm-hot intergalactic medium in the local Universe

We present a simple method for tracing the spatial distribution and predicting the physical properties of the Warm-Hot Intergalactic Medium (WHIM), from the map of galaxy light in the Local Universe. Under the assumption that biasing is local and monotonic we map the ∼2 h -1 Mpc smoothed density field of galaxy light into the mass-density field, from which we infer the spatial distribution of the WHIM in the Local Supercluster. Taking into account the scatter in the WHIM density-temperature and density-metallicity relation, extracted from the z = 0 outputs of high-resolution and large-box-size hydrodynamical cosmological simulations, we are able to quantify the probability of detecting WHIM signatures in the form of absorption features in the X-ray spectra, along arbitrary directions in the sky. To illustrate the usefulness of this semi-analytical method we focus on the WHIM properties in the Virgo cluster region.

[1]  F. Paerels,et al.  XMM-Newton confirmation of soft X-ray excess emission in clusters of galaxies - The discovery of O VII emission from an extended warm baryonic component , 2002, astro-ph/0210684.

[2]  Gordon B. Davis,et al.  AIS , 1998, DATB.

[3]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[4]  Jeremiah P. Ostriker,et al.  Cosmic Chemical Evolution , 1999, astro-ph/9903207.

[5]  V. Springel,et al.  Ultraviolet Line Emission from Metals in the Low-Redshift Intergalactic Medium , 2003, astro-ph/0309736.

[6]  The Physical Origin of Scale-dependent Bias in Cosmological Simulations , 1998, astro-ph/9807029.

[7]  B. Savage,et al.  Intervening O VI Quasar Absorption Systems at Low Redshift: A Significant Baryon Reservoir , 2000, The Astrophysical journal.

[8]  S. V. Penton,et al.  The Metagalactic Ionizing Radiation Field at Low Redshift , 1999, astro-ph/9907123.

[9]  M. Rowan-Robinson,et al.  A non-parametric model for the cosmic velocity field , 1999, astro-ph/9901366.

[10]  Jeremiah P. Ostriker,et al.  Revealing the Warm-Hot Intergalactic Medium with O VI Absorption , 2001 .

[11]  F. Mannucci,et al.  Warm-hot intergalactic baryons revealed , 2002, astro-ph/0208033.

[12]  Nickolay Y. Gnedin,et al.  The X-Ray Forest: A New Prediction of Hierarchical Structure Formation Models , 1998, astro-ph/9804038.

[13]  Phillip James Edwin Peebles,et al.  Tracing galaxy orbits back in time , 1989 .

[14]  J. Fisher,et al.  Neutral hydrogen observations of a large sample of galaxies. , 1981 .

[15]  Y. Hoffman,et al.  Constrained Simulations of the Real Universe: The Local Supercluster , 2001, astro-ph/0107104.

[16]  M. Rauch THE LYMAN ALPHA FOREST IN THE SPECTRA OF QUASISTELLAR OBJECTS , 1998, astro-ph/9806286.

[17]  Warm–hot intergalactic medium in the Sculptor supercluster , 2004, astro-ph/0402575.

[18]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[19]  Internal velocity and mass distributions in simulated clusters of galaxies for a variety of cosmogonic models , 1994, astro-ph/9404033.

[20]  E. Boldt,et al.  The cosmic X-ray background , 1979 .

[21]  Ryuichi Fujimoto,et al.  Locating the warm-hot intergalactic medium in the simulated local universe , 2004, astro-ph/0408140.

[22]  C. Sarazin Using X-ray absorption lines to determine the distances to clusters of galaxies , 1989 .

[23]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[24]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[25]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[26]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[27]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[28]  Erez N. Ribak,et al.  Primordial Gaussian perturbation fields : constrained realizations , 1992 .

[29]  R. Perna,et al.  X-Ray Absorption by the Hot Intergalactic Medium , 1998, astro-ph/9804076.

[30]  Antonella Fruscione,et al.  The mass of the missing baryons in the X-ray forest of the warm–hot intergalactic medium , 2005, Nature.

[31]  B. Savage,et al.  Distribution and Kinematics of O VI in the Galactic Halo , 2002, astro-ph/0208140.

[32]  P. Peebles,et al.  Action Principle Solutions for Galaxy Motions within 3000 Kilometers per Second , 1995, astro-ph/9506144.

[33]  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[34]  S. Mathur,et al.  The far-ultraviolet signature of the ‘missing’ baryons in the Local Group of galaxies , 2003, Nature.

[35]  Durham,et al.  Detecting X‐ray filaments in the low‐redshift Universe with XEUS and Constellation‐X , 2002, astro-ph/0210497.

[36]  X-Ray Absorption by the Low-Redshift Intergalactic Medium: A Numerical Study of the Λ Cold Dark Matter Model , 2002, astro-ph/0203319.

[37]  T. Fang,et al.  Chandra Detection of Local O VII Heα Absorption along the Sight Line toward 3C 273 , 2002, astro-ph/0210666.

[38]  On Recovering the Nonlinear Bias Function from Counts-in-Cells Measurements , 2003, astro-ph/0308525.

[39]  R. Cen,et al.  Hydrodynamic simulations of the growth of cosmological structure: Summary and comparisons among scenarios , 1996, astro-ph/9601021.

[40]  E. Branchini,et al.  Measuring the Nonlinear Biasing Function from a Galaxy Redshift Survey , 2000, astro-ph/0002170.

[41]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.